en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘新福(1983-),男,副教授,博士,硕士生导师,研究方向为石油机械工程、海洋工程装备技术。E-mail:upcdoctor@126.com。

通讯作者:

刘春花(1983-),女,讲师,硕士,研究方向为石油机械工程。E-mail:20090053@upc.edu.cn。

中图分类号:TP028.8

文献标识码:A

文章编号:1673-5005(2020)03-0141-07

DOI:10.3969/j.issn.1673-5005.2020.03.016

参考文献 1
曾青冬,佟颖,姚军.考虑应力干扰的多簇压裂水平井产能分布规律[J].中国石油大学学报(自然科学版),2019,43(1):99-107.ZENG Qingdong,TONG Ying,YAO Jun.Production distribution in multi-cluster fractured horizontal wells ac-counting for stress interference [J].Journal of China U-niversity of Petroleum(Edition of Natural Science),2019,43(1):99-107. 
参考文献 2
ZHOU Weidong,SHI Wei,LI Luopeng,et al.Finite el-ement analysis of high-pressure hose for radial horizontal wells in coalbed methane extraction [J].Journal of Coal Science and Engineering,2013,19(2):182-186. 
参考文献 3
李勇,曹代勇,魏迎春,等.准噶尔盆地南缘中低煤阶煤层气富集成藏规律[J].石油学报,2016,37(12):1472-1482.LI Yong,CAO Daiyong,WEI Yingchun,et al.Middle to low rank coalbed methane accumulation and reservoiring in the southern margin of Junggar Basin[J].Acta Petro-lei Sinica,2016,37(12):1472-1482. 
参考文献 4
尹邦堂,张旭鑫,王志远,等.考虑储层与井筒特征的高温高压水平井溢流风险评价 [J].中国石油大学学报(自然科学版),2019,43(4):82-90.YIN Bangtang,ZHANG Xuxin,WANG Zhiyuan,et al.Assessment of gas kick risk for high temperature and high pressure horizontal wells considering reservoir and well-bore characteristics [J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(4):82-90. 
参考文献 5
刘新福,刘春花,吴建军,等.煤储层排采液流携粉运移模型与产出规律[J].煤炭学报,2018,43(3):770-775.LIU Xinfu,LIU Chunhua,WU Jianjun,et al.Migration models of pulverized coal flowing with fluid and its pro-duction in CBM channels for the coal reservoirs [J].Journal of China Coal Society,2018,43(3):770-775. 
参考文献 6
LIU Xinfu,LIU Chunhua,WU Jianjun.A modern ap-proach to analyzing the flowing pressures of a two-phase CBM and water column in producing wellbores [J].Geofluids,2019,2019(4):1-9. 
参考文献 7
蒋睿,王永清,李海涛,等.煤层倾角对煤层气水平井产能影响的数值模拟[J].煤炭学报,2015,40(增 1):151-157.JIANG Rui,WANG Yongqing,LI Haitao,et al.A nu-merical simulation on the impact of coal seam dip on pro-ductivity of CBM horizontal well [J].Journal of China Coal Society,2015,40(sup1):151-157. 
参考文献 8
王生维,王峰明,侯光久,等.新疆阜康白杨河矿区急倾斜煤层的煤层气开发井型[J].煤炭学报,2014,39(9):1914-1918.WANG Shengwei,WANG Fengming,HOU Guangjiu,et al.CBM development well type for steep seam in Fukang Baiyanghe mining area,Xinjiang [J].Journal of China Coal Society,2014,39(9):1914-1918. 
参考文献 9
LEA J F,WINKLER H W.Fourteen new systems for beam,progressing cavity,plunger lift pumping and gas lift [J].World Oil,2002,223(4):59-67. 
参考文献 10
LIU Xinfu,QI Yaoguang.A modern approach to the se-lection of sucker rod pumping systems in CBM wells [J].Journal of Petroleum Science and Engineering,2011,76(3/4):100-108. 
参考文献 11
刘新福,刘春花,綦耀光.煤层气井排采系统有杆泵运行特性分析[J].机械工程学报,2017,53(8):195-200.LIU Xinfu,LIU Chunhua,QI Yaoguang.Operating per-formance of sucker rod pump for the pumping system in coalbed methane wells [J].Journal of Mechanical Engi-neering,2017,53(8):195-200. 
参考文献 12
ROWLAN O L,MCCOY J N,PODIL A L.Pump intake pressure determined from fluid levels,dynamometers,and valve-test measurements [J].Journal of Canadian Petroleum Technology,2011,50(4):59-66. 
参考文献 13
董世民,姚春冬,刘春忠,等.抽油泵泵阀运动规律的计算机仿真[J].系统仿真学报,2000,12(2):116-119.DONG Shimin,YAO Chundong,LIU Chunzhong,et al.Computerized simulation of the movement regulation of the valve of oil well pump [J].Journal of System Simu-lation,2000,12(2):116-119. 
参考文献 14
万国强,于大川.有杆抽油泵固定阀阀球运动规律模拟分析[J].西南石油大学学报(自然科学版),2013,35(4):165-172.WAN Guoqiang,YU Dachuan.Simulation analysis of the motion law of standing valve ball of the rod pump [J].Journal of Southwest Petroleum University(Sci-ence & Technology Edition),2013,35(4):165-172. 
参考文献 15
PEI Junfeng,HE Chao,L譈 Miaorong,et al.The valve motion characteristics of a reciprocating pump[J].Me-chanical Systems and Signal Processing,2016,66(7):657-664. 
参考文献 16
林日亿,孙茂盛,张邵东,等.有杆抽油泵沉没度的优化设计方法[J].石油大学学报(自然科学版),2005,29(4):87-90.LIN Riyi,SUN Maosheng,ZHANG Shaodong,et al.Optimization design method to determine submergence depth of sucker rod pump [J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(4):87-90. 
参考文献 17
李俊杰,隋德生.抽油泵阀开启压差的计算方法[J].石油机械,1998,26(7):42-44.LI Junjie,SUI Desheng.Method for calculation pressure drop over valve of sucker rod pump [J].China Petrole-um Machinery,1998,26(7):42-44. 
参考文献 18
HAN Mingxing,LIU Yinshui,WU Defa,et al.A nu-merical investigation in characteristics of flow force un-der cavitation state inside the water hydraulic poppet valves [J].International Journal of Heat and Mass Transfer,2017,111(1):1-16. 
参考文献 19
吕振华,李明.锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析[J].清华大学学报(自然科学版),2018,58(1):35-42.LÜ Zhenhua,LI Ming.Simulations of the unsteady fluid structure coupling characteristics of a conical orifice valve [J].Journal of Tsinghua University(Science and Technology),2018,58(1):35-42. 
参考文献 20
OKHOTNIKOV V,NOROOZI S,SEWELL P,et al.E-valuation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics [J].International Journal of Heat and Fluid Flow,2017,64(1):89-102.
目录contents

    摘要

    综合低沉没度和大斜度等因素耦合作用的影响,推导泵阀阀球伴随弹簧运动和造斜段泵腔液流连续流动的微分方程,建立水平井造斜段泵阀随液流运动的数学模型,依据数值求解结果揭示低流速液流中泵阀伴随弹簧的运动特性。 结果表明:低沉没度和大斜度等因素耦合作用下,增大冲程和冲次会提高泵阀阀球伴随弹簧运动的升程、速度和加速度,且增大冲程更有利于提高低流速液流入泵流速并使液流顺利进泵,下冲程中弹簧力与阀球重力的双重作用使得固定阀球伴随弹簧快速复位,这有利于顺利开启游动阀球和提高泵效;低流速液流中水平井泵阀开启瞬间的阀球加速度会出现短暂的周期性波动并在短时间内迅速变小,易引起阀球“抖动冶现象并降低泵效,且增大冲程和冲次将缩短阀球加速度趋向平缓的时间。

    Abstract

    The differential equations of a pump valve moving with the spring and continuous flow of water were derived under coupling conditions of low submergence and high inclination. Then the mathematical model of a pump valve moving with liq- uid was developed. The kinetic performance on the pump valve with a low water rate was analyzed based on the numerical simulation. The results show that the increases of stroke length and pumping speed lead to the increase of displacement, ve- locity and acceleration for the pump valve with a high inclination. The increased stroke length is beneficial to enhancing the water flow rate. The loadings of the spring force and ball gravity on the fixed valve make the pump valve reset quickly on the downstroke. It is beneficial to opening the travelling valve and improving efficiency of pumps in the CBM horizontal wells. The acceleration of pump valve is in the state of short-term cyclical fluctuation and decreases rapidly. It will make the pump valve jitter and cause the efficiency drop of the pump. Time taken to run smoothly for the pump valve can be reduced with the increased stroke length and pumping speed in the CBM horizontal wellbores.

  • 水平井是开发煤层气和页岩气等非常规油气资源的重要技术[1-4],煤系地层水平井若仍采用直井用的有杆泵进行排采,将会降低压力的传递速度并减少有效解吸的范围,无法充分发挥排采效果,甚至会在井筒或井筒附近发生煤粉堵塞的情况[5-8]。 鄂尔多斯盆地东缘各区块水平井主要采用在造斜段安装设有弹簧的有杆泵,一方面可避免泵筒大斜度倾斜导致泵阀不能正常启闭的问题,另一方面对泵阀的开启提出更高要求,此时低沉没度形成的低流速液流既要克服泵吸入口的水力摩阻,又要克服弹簧对阀球的附加弹力。 目前煤系地层所配套有杆泵泵阀运动特性的研究主要是移植和借鉴常规油气井抽油泵泵阀的分析方法[9-11]。 Rowlan等[12] 针对油井开采较高的沉没度,通过测量井筒中动液面位置、液柱密度和泵效等参数,获得抽油泵入口压力,由此分析影响抽油泵泵效的因素。 董世民等[13] 考虑井液可压缩性和泵阀魏氏运动效应对泵筒内液体连续流动条件的影响,由此分析抽油泵泵阀运动的动力特性。 万国强等[14]考虑抽油泵泵阀启闭过程对阀球运动的影响,分析了抽油泵阀球的受力和运动特性,研究了泵阀启闭阶段出现的滞后现象。 Pei等[15] 建立了泵阀运动参数测试实验系统,并设计出新的泵试验方法和实验系统。 这些研究针对的是油气直井开采的较高沉没度,并没有考虑低沉没度和大斜度工况泵阀动力学等参数的影响,也没有揭示水平井低流速液流泵阀所承受的沉没压力差别和泵腔压力变化状况。 为此,笔者推导阀球伴随弹簧运动、造斜段泵腔液流连续流动和泵阀随液流运动的微分方程,并依据数值求解结果分析低流速液流有杆泵泵阀的运动特性。

  • 1 水平井阀球运动和液流流动模型

  • 1.1 造斜段泵阀阀球伴随弹簧运动微分方程

  • 煤系地层水平井有杆泵的泵阀结构见图1。 柱塞沿轴向上行过程中,泵腔流压下降,当泵沉没压力可克服弹簧弹力和阀球重力之和[16-17] 时,造斜段泵阀开启,此时泵阀阀球主要承受泵阀上下压差举升力、阀球重力、弹簧弹力、井筒液流阻力以及泵阀阀球与阀座的摩擦力等作用力,由此造斜段泵阀阀球伴随弹簧运动的微分方程为

  • mvd2xvdt=Avw(pi-p)-mvgcosθ-kxv-Cddxvdt -sign(xv)fs
    (1)
  • 式中,Cd 为井筒液流阻力系数;f s 为泵阀阀球与阀座间的摩擦力,N;k为泵阀弹簧的弹性系数,N/m; mv 为阀球质量,kg;pi、p分别为泵入口和泵腔内流压,Pa;xv 为泵阀阀球的轴向位移,m;sign( xv)为符号函数,当xv ≥0 时,sign( xv)=1,当xv<0 时,sign(xv)=-1;θ 为泵深井斜角,rad。

  • 图1 煤系地层水平井有杆泵泵阀结构简图

  • Fig.1 Pump valve of sucker rod in CBM horizontal wells

  • Avw为井筒液流流经泵阀流道的截面积[18],表示为

  • Avw=πrsu23[1+2(1+2xvD1-rsu2D2+xv2D2)-1.5]
    (2)
  • 其中rsu为泵阀阀孔的最大半径,m;忽略井筒液流阻力和阀球与阀座间摩擦力,水平井造斜段泵阀阀球伴随弹簧运动的微分方程可简化为

  • mvd2xvdt=Avw(pi-p)-mvgcosθ-kxv
    (3)
  • 1.2 造斜段泵腔液流连续流动微分方程

  • 根据连续介质力学理论,水平井造斜段泵阀阀球伴随弹簧运动的dt时段内,有杆泵泵腔内新增的带压液流质量dm等于流经泵阀阀孔进入泵腔内的井筒液流质量dm',即dm=dm',则有

  • dm[Ac(Ls+xc)-Vs]dρ-ρdVs+Aρdx
    (4)
  • 式中,Ac 为有杆泵泵腔的截面积,m 2;Ls 为有杆泵防冲距,m;xc 为柱塞轴向位移,m;Vs 为阀球、阀隙和阀座所形成的体积[19],即

  • Vs=π(2D+D2-rsu23)(2D2-2DD2-rsu2-rsu2)+πrsu23(D2-rsu2+xv)-2πD33+2πD3(D2-rsu2+xv)3rsu2+(D2-rsu2+xv)2
    (5)
  • 泵腔液流密度 ρs 与液流压力p的关系[20]

  • ρs=ρ0exp[C0(p-p0)]
    (6)
  • 式中,C0 为泵腔液流体积系数;p0为标准压力,Pa; ρ0 为标准状况下泵腔液流密度,kg/m 3

  • 水平井造斜段有杆泵柱塞轴向位移xc

  • xc=S2[1-cos(πn30t)]
    (7)
  • 式中,n为冲程次数,min -1;S为冲程长度,m。

  • dt内经阀孔进入泵腔的井筒液流质量dm'为

  • dm'=2ξAveερs|pi-pρsdt
    (8)
  • 式中, ξ 为泵阀流量系数; ε为系数,当pi≥p时, ε=1,当pi<p时,ε=-1。

  • Avc为造斜段有杆泵泵阀阀隙过流面积,即

  • Ave=πrsuxv(21-rsu2D-2+xvD)1+2xv1-rsu2D-2D+xv2D-2
    (9)
  • 由此,推导出水平井造斜段有杆泵泵腔液流连续流动微分方程为

  • dpdt=[2ξAvερs|pi-pρs+ρdVsdt- Avρdxcdt]1[Ac(Ls+xc)-Vs]dρdp
    (10)
  • 2 水平井泵阀随液流运动数学模型

  • 煤系地层水平井有杆泵泵阀通常采用不完全研合式的环形密封带(图1),此时水平井造斜段泵阀阀球在启闭过程中所受到的入泵带压井筒液流的作用力F的表达式为

  • F=π4dL2pd-π4dU2pu+ 0.5dL0.5d02π[pd+2(pd-pu)dL-dU×(r-dL2)]rdr
    (11)
  • 式中,pu、pd 分别为造斜段泵阀阀孔上部和下部阀球所受的液流压力,Pa;dL、dU 分别为水平井造斜段泵阀阀孔下部和上部的阀球承压面直径,m。

  • dL、dU 表达式分别为

  • dL=Dcos[θ+1sin(sD)]
    (12)
  • dU=Dcos[θ-1sin(sD)]
    (13)
  • 式中,s为水平井造斜段泵阀阀球与阀座接触部位的弧线段长,m;D为泵阀阀球球径,m。

  • 由此推导出水平井造斜段泵阀启闭过程中入泵带压井筒液流对阀球的作用力为

  • F=π12(pd-pu)(dL2+dUdL+dU2)
    (14)
  • 初始状态下有杆泵泵阀弹簧对阀球所施加的作用力为零,根据泵阀阀球的受力平衡条件,此时水平井造斜段泵阀开启压差 Δpos与泵阀开启压力pos之间关系的表达式为

  • pos=pi-Δpos
    (15)
  • 其中

  • Δpos=pd-pu=12Gsinθπ(dL2+dUdL+dU2)

  • 式中,G为阀球重力,N。

  • 根据造斜段泵阀阀球伴随弹簧运动以及造斜段泵腔液流连续流动的微分方程,推导出煤系地层水平井泵阀随液流运动的微分方程组,即

  • {dx1dt=[2ξAveερs|pi-pρs+ρdVsdt-dd]dρdx1Avρdxcdt]d-[Ac(Ls+xc)-Vvdx2dt=x3=dx3m(pi-x1)-gcosθ-kxvm
    (16)
  • 式中,x1 为进入泵腔带压液流的压力,Pa;x2 为泵阀阀球伴随弹簧轴向运动的升程,m;x3 为造斜段泵阀阀球伴随弹簧轴向运动的速度,m/s。

  • 水平井泵阀随液流运动模型的初始条件为

  • {x1|t=0=p0sx2|t=0=0x3|t=0=0
    (17)
  • 利用水平井泵阀随液流运动模型的初始条件和各排采参数进行数值求解,可揭示低沉没度和大斜度耦合工况低流速液流有杆泵所承受的沉没压力差别及泵腔压力变化和泵阀受力状况。

  • 3 实例计算结果及分析

  • 3.1 基本参数

  • 为揭示煤系地层水平井有杆泵泵阀随低流速液流运动的规律,以鄂尔多斯盆地大宁—吉县区块TP01-H水平井的排采参数为依据对上述模型进行数值求解和实例分析,该井所测的基本参数为:套管管径177.80 mm,油管管径73.02 mm,有杆泵泵径38 mm,排水量6.0 m 3/d,井口套压3.01 MPa,井底流压4.55 MPa,泵沉没压力0.55 MPa。

  • 3.2 数值模拟与实例分析

  • 图2 给出了冲程长度1.80 m时,不同冲程次数工况水平井低流速液流中泵阀阀球伴随弹簧轴向运动升程的变化规律。 由图2 可知,柱塞沿轴向上冲程时,泵阀阀球伴随弹簧开启且其轴向位移逐渐增加,并在上冲程结束瞬间达到最大升程。 图中冲次为0.4、 2.0 和5.0 min -1 时的最大升程依次为10.445、10.446 和10.447 mm。

  • 图2 不同冲次时水平井泵阀阀球伴随弹簧的升程曲线

  • Fig.2 Variation of displacement for pump valve with different pumping speeds

  • 柱塞沿轴向下冲程时,泵阀阀球伴随弹簧复位且其轴向位移迅速减小,直至阀球复位至阀座上且整个复位过程仅经历时间约1 s,固定阀球伴随弹簧快速复位对增加泵腔流压、保证游动阀球及时顺利开启以及提高泵效均具有重要意义。 与此同时,提高冲程次数可稍微提升水平井泵阀阀球伴随弹簧运动的最大升程。

  • 图3 给出了冲程次数为2.0 min -1时,不同冲程长度工况水平井低流速液流中泵阀阀球伴随弹簧轴向运动升程的变化规律。 由图3 可知,提高冲程长度可显著提升水平井泵阀阀球伴随弹簧运动的最大升程,更有利于低流速液流顺利进泵。 图中冲程为1.20、1.80 和2.50 m时的最大升程依次为6.954、 10.446 和14.521 mm。

  • 图4 给出了冲程长度为1.80 m时,不同冲程次数工况水平井低流速液流中泵阀阀球伴随弹簧轴向运动速度的变化规律。 由图4 可知,柱塞沿轴向上冲程时,泵阀阀球伴随弹簧运动速度的变化近似呈二次型拟合曲线,且水平井泵阀阀球伴随弹簧运动的最大速度随冲次增大而逐渐提升。 图中冲次为0.4、2.0 和5.0 min -1 时的最大速度依次为0.219、 1.097 和2.742 mm/s。

  • 图3 不同冲程时水平井泵阀阀球伴随弹簧的升程曲线

  • Fig.3 Variation of displacement for pump valve with different stroke lengths

  • 图4 不同冲次时水平井泵阀阀球伴随弹簧的速度曲线

  • Fig.4 Variation of velocity for pump valve with different pumping speeds

  • 柱塞沿轴向下冲程时,固定阀球伴随弹簧快速复位,该过程中受弹簧力与阀球重力的双重作用,泵阀阀球伴随弹簧运动的速度迅速增大,而后泵阀阀球复位至阀座上且其速度骤然降为零。 图4 中煤系地层水平井泵阀的整个复位过程仅需约1 s,且复位过程中泵阀由最大速度降为零所经历的时间不足0.1 s。

  • 图5 给出了冲程次数为2.0 min -1时,不同冲程长度工况水平井低流速液流中泵阀阀球伴随弹簧运动速度的变化规律。 由图5 可知,增大冲程可提升水平井泵阀阀球伴随弹簧运动的速度,有利于提高低流速液流入泵流速和改善液流携煤粉能力。 上冲程中冲程为1.20、1.80 和2.50 m时的最大速度依次为0.731、1.097 和1.523 mm/s。

  • 图6 为冲程长度为1.80 m时,不同冲程次数工况水平井低流速液流中泵阀阀球伴随弹簧轴向运动加速度的变化规律。 由图6 可知,泵阀开启瞬间的阀球加速度会出现短暂的周期性波动,加速度的变化幅值不断波动且其变化频率较快,同时增大冲次会提高泵阀阀球伴随弹簧运动的瞬时加速度,冲次由2.0 min -1升至5.0 min-1时的最大加速度由2.25 m/s 2 增至3.40 m/s 2,其主要原因是开启瞬间的阀球上部和下部压差瞬时改变,加上弹簧力和井筒液流水力摩阻的影响,使得泵阀阀球伴随弹簧的加速度在短时间内迅速下降,而后趋向平缓且所用时间介于0.7~1.0 ms,这容易引起阀球“抖动"现象,并降低泵效。 同时增大冲次将缩短泵阀伴随弹簧运动的瞬时加速度趋向平缓所用的时间。

  • 图5 不同冲程时水平井泵阀阀球伴随弹簧的速度曲线

  • Fig.5 Variation of velocity for pump valve with different stroke lengths

  • 图6 不同冲次时水平井泵阀阀球伴随弹簧加速度曲线

  • Fig.6 Variation of acceleration for pump valve with different pumping speeds

  • 图7 为冲程次数为2.0 min -1时,不同冲程长度工况水平井低流速液流中泵阀阀球伴随弹簧轴向运动加速度的变化规律。 由图7 可知,增大冲程将提高泵阀阀球伴随弹簧运动的瞬时加速度,但提升的幅度不明显,且增大冲程将缩短泵阀阀球伴随弹簧运动的瞬时加速度趋向平缓所用的时间。 图7 中冲程由1.20 m升至2.50 m时的最大加速度由2.32 m/s 2 增至2.42 m/s 2,且瞬时加速度趋向平缓所用的时间由1.0 ms缩短至0.55 ms。

  • 图7 不同冲程时水平井泵阀阀球伴随弹簧加速度曲线

  • Fig.7 Variation of acceleration for pump valve with different stroke lengths

  • 4 结论

  • (1)低沉没度和大斜度等因素耦合作用下,增大冲程和冲次会提高泵阀阀球伴随弹簧运动的升程和速度,且增大冲程可大幅提升水平井泵阀速度,更有利于提高低流速液流入泵流速和改善液流携煤粉能力。

  • (2)下冲程中受弹簧力与阀球重力的双重作用,固定阀球伴随弹簧快速复位,而后阀球复位至阀座上且其速度骤降为零,整个复位过程仅需约1 s, 且泵阀由最大速度降为零所需时间不足0.1 s,这对增加泵腔流压、保证游动阀球及时顺利开启和提高泵效均具有重要意义。

  • (3)低流速液流中,煤系地层水平井泵阀开启瞬间的压差变化使得阀球加速度会出现短暂的周期性波动,加之弹簧力和井筒液流水力摩阻作用而使阀球加速度在短时间内迅速变小,且增大冲程和冲次会提高泵阀运动的瞬时加速度并缩短瞬时加速度趋向平缓所用时间。

  • 参考文献

    • [1] 曾青冬,佟颖,姚军.考虑应力干扰的多簇压裂水平井产能分布规律[J].中国石油大学学报(自然科学版),2019,43(1):99-107.ZENG Qingdong,TONG Ying,YAO Jun.Production distribution in multi-cluster fractured horizontal wells ac-counting for stress interference [J].Journal of China U-niversity of Petroleum(Edition of Natural Science),2019,43(1):99-107. 

    • [2] ZHOU Weidong,SHI Wei,LI Luopeng,et al.Finite el-ement analysis of high-pressure hose for radial horizontal wells in coalbed methane extraction [J].Journal of Coal Science and Engineering,2013,19(2):182-186. 

    • [3] 李勇,曹代勇,魏迎春,等.准噶尔盆地南缘中低煤阶煤层气富集成藏规律[J].石油学报,2016,37(12):1472-1482.LI Yong,CAO Daiyong,WEI Yingchun,et al.Middle to low rank coalbed methane accumulation and reservoiring in the southern margin of Junggar Basin[J].Acta Petro-lei Sinica,2016,37(12):1472-1482. 

    • [4] 尹邦堂,张旭鑫,王志远,等.考虑储层与井筒特征的高温高压水平井溢流风险评价 [J].中国石油大学学报(自然科学版),2019,43(4):82-90.YIN Bangtang,ZHANG Xuxin,WANG Zhiyuan,et al.Assessment of gas kick risk for high temperature and high pressure horizontal wells considering reservoir and well-bore characteristics [J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(4):82-90. 

    • [5] 刘新福,刘春花,吴建军,等.煤储层排采液流携粉运移模型与产出规律[J].煤炭学报,2018,43(3):770-775.LIU Xinfu,LIU Chunhua,WU Jianjun,et al.Migration models of pulverized coal flowing with fluid and its pro-duction in CBM channels for the coal reservoirs [J].Journal of China Coal Society,2018,43(3):770-775. 

    • [6] LIU Xinfu,LIU Chunhua,WU Jianjun.A modern ap-proach to analyzing the flowing pressures of a two-phase CBM and water column in producing wellbores [J].Geofluids,2019,2019(4):1-9. 

    • [7] 蒋睿,王永清,李海涛,等.煤层倾角对煤层气水平井产能影响的数值模拟[J].煤炭学报,2015,40(增 1):151-157.JIANG Rui,WANG Yongqing,LI Haitao,et al.A nu-merical simulation on the impact of coal seam dip on pro-ductivity of CBM horizontal well [J].Journal of China Coal Society,2015,40(sup1):151-157. 

    • [8] 王生维,王峰明,侯光久,等.新疆阜康白杨河矿区急倾斜煤层的煤层气开发井型[J].煤炭学报,2014,39(9):1914-1918.WANG Shengwei,WANG Fengming,HOU Guangjiu,et al.CBM development well type for steep seam in Fukang Baiyanghe mining area,Xinjiang [J].Journal of China Coal Society,2014,39(9):1914-1918. 

    • [9] LEA J F,WINKLER H W.Fourteen new systems for beam,progressing cavity,plunger lift pumping and gas lift [J].World Oil,2002,223(4):59-67. 

    • [10] LIU Xinfu,QI Yaoguang.A modern approach to the se-lection of sucker rod pumping systems in CBM wells [J].Journal of Petroleum Science and Engineering,2011,76(3/4):100-108. 

    • [11] 刘新福,刘春花,綦耀光.煤层气井排采系统有杆泵运行特性分析[J].机械工程学报,2017,53(8):195-200.LIU Xinfu,LIU Chunhua,QI Yaoguang.Operating per-formance of sucker rod pump for the pumping system in coalbed methane wells [J].Journal of Mechanical Engi-neering,2017,53(8):195-200. 

    • [12] ROWLAN O L,MCCOY J N,PODIL A L.Pump intake pressure determined from fluid levels,dynamometers,and valve-test measurements [J].Journal of Canadian Petroleum Technology,2011,50(4):59-66. 

    • [13] 董世民,姚春冬,刘春忠,等.抽油泵泵阀运动规律的计算机仿真[J].系统仿真学报,2000,12(2):116-119.DONG Shimin,YAO Chundong,LIU Chunzhong,et al.Computerized simulation of the movement regulation of the valve of oil well pump [J].Journal of System Simu-lation,2000,12(2):116-119. 

    • [14] 万国强,于大川.有杆抽油泵固定阀阀球运动规律模拟分析[J].西南石油大学学报(自然科学版),2013,35(4):165-172.WAN Guoqiang,YU Dachuan.Simulation analysis of the motion law of standing valve ball of the rod pump [J].Journal of Southwest Petroleum University(Sci-ence & Technology Edition),2013,35(4):165-172. 

    • [15] PEI Junfeng,HE Chao,L譈 Miaorong,et al.The valve motion characteristics of a reciprocating pump[J].Me-chanical Systems and Signal Processing,2016,66(7):657-664. 

    • [16] 林日亿,孙茂盛,张邵东,等.有杆抽油泵沉没度的优化设计方法[J].石油大学学报(自然科学版),2005,29(4):87-90.LIN Riyi,SUN Maosheng,ZHANG Shaodong,et al.Optimization design method to determine submergence depth of sucker rod pump [J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(4):87-90. 

    • [17] 李俊杰,隋德生.抽油泵阀开启压差的计算方法[J].石油机械,1998,26(7):42-44.LI Junjie,SUI Desheng.Method for calculation pressure drop over valve of sucker rod pump [J].China Petrole-um Machinery,1998,26(7):42-44. 

    • [18] HAN Mingxing,LIU Yinshui,WU Defa,et al.A nu-merical investigation in characteristics of flow force un-der cavitation state inside the water hydraulic poppet valves [J].International Journal of Heat and Mass Transfer,2017,111(1):1-16. 

    • [19] 吕振华,李明.锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析[J].清华大学学报(自然科学版),2018,58(1):35-42.LÜ Zhenhua,LI Ming.Simulations of the unsteady fluid structure coupling characteristics of a conical orifice valve [J].Journal of Tsinghua University(Science and Technology),2018,58(1):35-42. 

    • [20] OKHOTNIKOV V,NOROOZI S,SEWELL P,et al.E-valuation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics [J].International Journal of Heat and Fluid Flow,2017,64(1):89-102.

  • 参考文献

    • [1] 曾青冬,佟颖,姚军.考虑应力干扰的多簇压裂水平井产能分布规律[J].中国石油大学学报(自然科学版),2019,43(1):99-107.ZENG Qingdong,TONG Ying,YAO Jun.Production distribution in multi-cluster fractured horizontal wells ac-counting for stress interference [J].Journal of China U-niversity of Petroleum(Edition of Natural Science),2019,43(1):99-107. 

    • [2] ZHOU Weidong,SHI Wei,LI Luopeng,et al.Finite el-ement analysis of high-pressure hose for radial horizontal wells in coalbed methane extraction [J].Journal of Coal Science and Engineering,2013,19(2):182-186. 

    • [3] 李勇,曹代勇,魏迎春,等.准噶尔盆地南缘中低煤阶煤层气富集成藏规律[J].石油学报,2016,37(12):1472-1482.LI Yong,CAO Daiyong,WEI Yingchun,et al.Middle to low rank coalbed methane accumulation and reservoiring in the southern margin of Junggar Basin[J].Acta Petro-lei Sinica,2016,37(12):1472-1482. 

    • [4] 尹邦堂,张旭鑫,王志远,等.考虑储层与井筒特征的高温高压水平井溢流风险评价 [J].中国石油大学学报(自然科学版),2019,43(4):82-90.YIN Bangtang,ZHANG Xuxin,WANG Zhiyuan,et al.Assessment of gas kick risk for high temperature and high pressure horizontal wells considering reservoir and well-bore characteristics [J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(4):82-90. 

    • [5] 刘新福,刘春花,吴建军,等.煤储层排采液流携粉运移模型与产出规律[J].煤炭学报,2018,43(3):770-775.LIU Xinfu,LIU Chunhua,WU Jianjun,et al.Migration models of pulverized coal flowing with fluid and its pro-duction in CBM channels for the coal reservoirs [J].Journal of China Coal Society,2018,43(3):770-775. 

    • [6] LIU Xinfu,LIU Chunhua,WU Jianjun.A modern ap-proach to analyzing the flowing pressures of a two-phase CBM and water column in producing wellbores [J].Geofluids,2019,2019(4):1-9. 

    • [7] 蒋睿,王永清,李海涛,等.煤层倾角对煤层气水平井产能影响的数值模拟[J].煤炭学报,2015,40(增 1):151-157.JIANG Rui,WANG Yongqing,LI Haitao,et al.A nu-merical simulation on the impact of coal seam dip on pro-ductivity of CBM horizontal well [J].Journal of China Coal Society,2015,40(sup1):151-157. 

    • [8] 王生维,王峰明,侯光久,等.新疆阜康白杨河矿区急倾斜煤层的煤层气开发井型[J].煤炭学报,2014,39(9):1914-1918.WANG Shengwei,WANG Fengming,HOU Guangjiu,et al.CBM development well type for steep seam in Fukang Baiyanghe mining area,Xinjiang [J].Journal of China Coal Society,2014,39(9):1914-1918. 

    • [9] LEA J F,WINKLER H W.Fourteen new systems for beam,progressing cavity,plunger lift pumping and gas lift [J].World Oil,2002,223(4):59-67. 

    • [10] LIU Xinfu,QI Yaoguang.A modern approach to the se-lection of sucker rod pumping systems in CBM wells [J].Journal of Petroleum Science and Engineering,2011,76(3/4):100-108. 

    • [11] 刘新福,刘春花,綦耀光.煤层气井排采系统有杆泵运行特性分析[J].机械工程学报,2017,53(8):195-200.LIU Xinfu,LIU Chunhua,QI Yaoguang.Operating per-formance of sucker rod pump for the pumping system in coalbed methane wells [J].Journal of Mechanical Engi-neering,2017,53(8):195-200. 

    • [12] ROWLAN O L,MCCOY J N,PODIL A L.Pump intake pressure determined from fluid levels,dynamometers,and valve-test measurements [J].Journal of Canadian Petroleum Technology,2011,50(4):59-66. 

    • [13] 董世民,姚春冬,刘春忠,等.抽油泵泵阀运动规律的计算机仿真[J].系统仿真学报,2000,12(2):116-119.DONG Shimin,YAO Chundong,LIU Chunzhong,et al.Computerized simulation of the movement regulation of the valve of oil well pump [J].Journal of System Simu-lation,2000,12(2):116-119. 

    • [14] 万国强,于大川.有杆抽油泵固定阀阀球运动规律模拟分析[J].西南石油大学学报(自然科学版),2013,35(4):165-172.WAN Guoqiang,YU Dachuan.Simulation analysis of the motion law of standing valve ball of the rod pump [J].Journal of Southwest Petroleum University(Sci-ence & Technology Edition),2013,35(4):165-172. 

    • [15] PEI Junfeng,HE Chao,L譈 Miaorong,et al.The valve motion characteristics of a reciprocating pump[J].Me-chanical Systems and Signal Processing,2016,66(7):657-664. 

    • [16] 林日亿,孙茂盛,张邵东,等.有杆抽油泵沉没度的优化设计方法[J].石油大学学报(自然科学版),2005,29(4):87-90.LIN Riyi,SUN Maosheng,ZHANG Shaodong,et al.Optimization design method to determine submergence depth of sucker rod pump [J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(4):87-90. 

    • [17] 李俊杰,隋德生.抽油泵阀开启压差的计算方法[J].石油机械,1998,26(7):42-44.LI Junjie,SUI Desheng.Method for calculation pressure drop over valve of sucker rod pump [J].China Petrole-um Machinery,1998,26(7):42-44. 

    • [18] HAN Mingxing,LIU Yinshui,WU Defa,et al.A nu-merical investigation in characteristics of flow force un-der cavitation state inside the water hydraulic poppet valves [J].International Journal of Heat and Mass Transfer,2017,111(1):1-16. 

    • [19] 吕振华,李明.锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析[J].清华大学学报(自然科学版),2018,58(1):35-42.LÜ Zhenhua,LI Ming.Simulations of the unsteady fluid structure coupling characteristics of a conical orifice valve [J].Journal of Tsinghua University(Science and Technology),2018,58(1):35-42. 

    • [20] OKHOTNIKOV V,NOROOZI S,SEWELL P,et al.E-valuation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics [J].International Journal of Heat and Fluid Flow,2017,64(1):89-102.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计