en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈爽(1973-),女,副教授,硕士,研究方向为化学工程、废弃资源有效利用。E-mail:chsh1030@163.com。

中图分类号:X703

文献标识码:A

文章编号:1673-5005(2021)02-0173-08

DOI:10.3969/j.issn.1673-5005.2021.02.021

参考文献 1
安连财,韩久放,章应辉,等.多孔有机聚合物吸附分离水体系中有机污染物研究和应用进展[J].应用化学,2018,35(9):1019-1025.AN Liancai,HAN Jiufang,ZHANG Yinghui,et al.Research and application progress on porous organic polymers for adsorption and separation of organic pollutants in water system [J].Chinese Journal of Applied Chemistry,2018,35(9):1019-1025.
参考文献 2
康媛媛,郭泽清,周剑平.MoS2/Na2Fe2Ti 6O16 的水热制备及吸附性能[J].高等学校化学学报,2018,39(7):1364-1370.KANG Yuanyuan,GUO Zeqing,ZHOU Jianping.Hydrothermal preparation and adsorption property of MoS2/Na2Fe2Ti 6O16 [J].Chemical Journal of Chinese Universities,2018,39(7):1364-1370.
参考文献 3
张巍.膨润土吸附水中有机污染物的应用进展[J].化工环保,2018,38(3):267-274.ZHANG Wei.Application progress in bentonite to adsorb organic pollutants in water [J].Environmental Protection of Chemical Industry,2018,38(3):267-274.
参考文献 4
FERNANDEZ J,BONASTRE J,MOLINA J,et al.Electrochemical study on an activated carbon cloth modified by cyclic voltammetry with polypyrrole/anthra-quinone sulfonate and reduced graphene oxide as electrode for energy storage [J].European Polymer Journal,2018,103:179-186.
参考文献 5
南国枝,范维玉.用活性炭脱除石脑油中氯化物[J].中国石油大学学报(自然科学版),2010,34(2):159-162.NAN Guozhi,FAN Weiyu.Removal of chlorides in naphtha using active carbon [J].Journal of China University of Petroleum Edition of Natrual Science(Edition of Natural Science),2010,34(2):159-162.
参考文献 6
TEO E Y L,MUNIANDY L,NG E P,et al.High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J].Electrochimica Acta,2016,192:110-119.
参考文献 7
任爱玲,王启山,郭斌.污泥活性炭的结构特征及表面分形分析[J].化学学报,2006,64(10):1068-1072.REN Ailing,WANG Qishan,GUO Bin.Structure characterization and surface fractal analysis of sludge activated carbon [J].Acta Chimica Sinica,2006,64(10):1068-1072.
参考文献 8
SILVA T L,RONIX A,PEZOTI O,et al.Mesoporous activated carbon from industrial laundry sewage sludge:adsorption studies of reactive dye Remazol Brilliant Blue R [J].Chemical Engineering Journal,2016,303:467-476.
参考文献 9
USHIKI I,KIKUCHI K,SATO Y,et al.Adsorption equilibria of VOCs(n-octane,propylene glycol monomethyl ether,ethanol,and 2-propanol)on activated carbon under supercritical carbon dioxide conditions [J].Fluid Phase Equilibria,2018,462:59-64.
参考文献 10
WONG S,YAC̍COB N A N,NGADI N,et al.From pollutant to solution of wastewater pollution:synthesis of activated carbon from textile sludge for dye adsorption [J].Chinese Journal of Chemical Engineering,2018,26(4):870-878.
参考文献 11
MENENDEZ J A,INGUANZO M,PIS J J.Microwaveinduced pyrolysis of sewage sludge [J].Water Research,2002,36(13):3261-3264.
参考文献 12
ROZADA F,OTERO M,MORAN A,et al.Adsorption of heavy metals onto sewage sludge-derived materials [J].Bioresource Technology,2008,99(14):6332-6338.
参考文献 13
SMITH K M,FOWLER G D,PULLKET S,et al.Sewage sludge-based adsorbents:a review of their production,properties and use in water treatment applications [J].Water Research,2009,43(10):2569-2594.
参考文献 14
MARTIN M J,ARTOLA A,BALAGUER M D,et al.Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions [J].Chemical Engineering Journal,2003,94(3):231-239.
参考文献 15
YU X,WANG S,ZHANG J.Preparation of high adsorption performance activated carbon by pyrolysis of waste polyester fabric[J].Journal of Materials Science,2018,53(7):5458-5466.
参考文献 16
NUITHITIKUL K,SRIKHUN S,HIRUNPRADITKOON S.Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon [J].Bioresource Technology,2010,101(1):426-429.
参考文献 17
TEIXEIRA V G,COUTINHO F M B,GOMES A S.The most important methods for the characterization of porosity of styrene-divinylbenzene based resins [J].Quimica Nova,2001,24(6):808-818.
参考文献 18
WANG S,ZHU Z H.Effects of acidic treatment of activated carbons on dye adsorption [J].Dyes and Pigments,2007,75(2):306-314.
参考文献 19
KAVITHA D,NAMASIVAYAM C.Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J].Bioresource Technology,2007,98(1):14-21.
参考文献 20
KUMAR K V,PORKODI K.Relation between some two-and three-parameter isotherm models for the sorption of methylene blue onto lemon peel[J].Journal of Hazardous Materials,2006,138(3):633-635.
参考文献 21
GONG R,LI M,YANG C,et al.Removal of cationic dyes from aqueous solution by adsorption on peanut hull [J].Journal of Hazardous Materials,2005,121(1):248-250.
参考文献 22
HAMEED B H,AHMAD A A.Batch adsorption of methylene blue from aqueous solution by garlic peel,an agricultural waste biomass [J].Journal of hazardous materials,2009,164(2/3):870-875.
参考文献 23
MANEERUNG T,LIEW J,DAI Y,et al.Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption:kinetics,isotherms and thermodynamic studies[J].Bioresource Technology,2016,200:350-359.
参考文献 24
BARKA N,OUZAOUIT K,ABDENNOURI M,et al.Dried prickly pear cactus(Opuntia ficus indica)cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions [J].Journal of the Taiwan Institute of Chemical Engineers,2013,44(1):52-60.
参考文献 25
宋华,王登,宋华林,等.Ag/TiO-2-NaY 吸附苯并噻吩热力学和动力学研究[J].中国石油大学学报(自然科学版),2012,36(6):158-163,171.SONG Hua,WANG Deng,SONG Hualin,et al.Thermodynamics and kinetics studies on adsorption of benzothiophene onto Ag/TiO2-NaY zeolite [J].Journal of China University of Petroleum(Edition of Natrual Science),2012,36(6):158-163,171.
目录contents

    摘要

    采用物理-化学活化法,研究以东营某污水厂剩余污泥为原料的污泥基活性炭制备工艺。 结合热重分析 (TGA)、比表面测试(BET)、孔径分布(BJH)和扫描电镜(SEM)等表征方法,考察不同工艺条件下污泥基活性炭孔道结构的变化,将此活性炭作为有机染料废水吸附剂进行亚甲基蓝去除效果实验。 结果表明:以 3 mol / L 氯化锌溶液为活化剂,在炭化温度 550 ℃ 、炭化时间 60 min、HCl 浓度为 2 mol / L 酸洗的最佳工艺条件下,制备的污泥基活性炭比表面积高达 1800. 11 m 2 / g,平均孔径 3. 862 nm;该活性炭孔道丰富,孔结构分布广泛,以微孔为主,所占比例达 81. 63%;污泥基活性炭对亚甲基蓝具有良好的去除效果,可应用于有机染料废水处理工艺中。

    Abstract

    The preparation process of sludge-based carbon from excess sludge of a wastewater treatment plant in Dongying was studied by physical-chemical activation method. The porous structure change of sludge -based carbon under different process conditions was investigated with TGA, BET, BJH and SEM. Then, this carbon was applied in removing test of methylene blue (MB) in dye pollutants. The results indicate that the optimal conditions are 3 mol / L ZnCl 2 as an activator, 550 ℃ carbonization temperature with carbonization time of 60 min, and 2 mol / L of HCl. As a consequence, the BET surface area of activated sludge prepared by activated sludge is as high as 1800. 11 m 2 / g and the average diameter is 3. 862 nm. It is found that the activated carbon has rich pore channels and widely distributed pore structure, with micropores as the main pore, accounting for 81. 63%. Also, sludge-based activated carbon presents good removal effect on methylene blue, and can be used in organic dye wastewater treatment process.

  • 有机染料废水属于常见的工业废水,处理难点在于水量较多、污染物含量高。通常的吸附剂有膨润土、金属复合材料、有机聚合物等[1-3]。但原料价格高、吸附剂环境适应性差。活性炭作为性能优异的碳基材料,具有孔道结构丰富、性质稳定等优点[4-6]。但高质量活性炭的制备温度较高,原料来源有限。当前利用污泥制备高吸附性能的活性炭引人关注[7-10]。笔者研究以城市污水厂污泥为原料, 利用物理化学活化法,研究制备过程中污泥基活性炭的孔道结构的变化,实现污泥基活性炭的可控制备,并将制备的污泥基活性炭应用于亚甲基蓝吸附性能测试中。

  • 1 实验

  • 1.1 材料与仪器

  • 实验材料:脱水污泥取自东营市某污水处理厂。碘化钾(KI) 分析纯;氯化锌( ZnCl2) 化学纯;盐酸(HCl)分析纯;可溶性淀粉分析纯;碘( I2) 分析纯; 亚甲基蓝·三水指示剂。以上药品均来自国药集团化学试剂有限公司。

  • 仪器:紫外可见分光光度计752N;电子天平ME204TE;DF-101S恒温水浴搅拌器;非标管式电阻炉;智能型电热恒温鼓风干燥箱FCD-3000;热重Q500与红外Nicolet 6700联用仪;比表面积及孔径分析仪Tristar Ⅱ 3020;扫描电镜S-4800。

  • 1.2 污泥的组分分析

  • 根据《木质活性炭试验方法灰分含量的测定》(GB/T12496.3-1999)确定试样中干基灰分。分析表明,污泥中含有14.35%的固定碳,且挥发性组分占35.80%,有利于孔道的形成。

  • 1.3 污泥基活性炭的制备

  • 将原料污泥在烘箱中105℃ 干燥24h,取出后研磨筛分得到粒径在0.140~0.381mm间的原料。

  • 采用物理-化学活化法制备污泥基活性炭,具体制备流程如下:称取10g原料污泥,用ZnCl2 溶液浸渍活化污泥24h,在105℃ 下干燥2h,得到活化样品。将活化样品放入管式加热炉中升温至300℃,恒温热解1h,继续升温至550℃,炭化1h得到粗产品。用盐酸浸渍1h,再水洗过滤至滤液呈中性;最后在105℃ 干燥至恒重,得到污泥基活性炭(sludge activated carbon),记作SAC。

  • 1.4 吸附性能测试

  • 用SAC对亚甲基蓝(methylene blue,MB) 进行吸附实验:称取0.1g样品若干份,分置于250mL的圆底烧瓶中,再分别加入200mL质量浓度为25mg/L亚甲基蓝溶液。将上述混合液放入水浴反应器中搅拌均匀,恒定25℃为吸附温度;吸附每隔10min,取体系上层清液,并用去离子水作为参比,以紫外可见分光光度计测定溶液吸光度(664nm)。根据Lambert-Beer定律,利用标准曲线计算溶液剩余质量浓度和吸附剂平衡吸附率:

  • qe=c0-cVM
    (1)
  • 式中,qe 为平衡吸附率;V为溶液体积,mL;M 为吸附剂质量, g; c0 c 为吸附前、后MB质量浓度, mg/L。

  • 碘吸附实验:按照《木质活性炭试验方法碘吸附值的测定》(GB/T12496.8—1999)评价活性炭吸附能力。

  • 1.5 表征

  • 采用日本日立公司的扫描电镜( S-4800)检测试样的表面结构特征。

  • 利用美国Micromeritics公司的全自动微孔分析仪(Tristar Ⅱ 3020),在77K条件下,得到试样的N2 吸脱附等温线、比表面积,用BJH法探测孔道分布。

  • 利用热重(Q 500,TA Corp, USA),实时在线分析SAC热解过程。保护气(N2)流量为70mL/min, 升温速率为15℃/min。

  • 2 结果分析

  • 2.1 活化剂浓度对SAC吸附性能的影响

  • 测得在不同活化剂浓度下SAC的碘吸附率(定义物质的吸附率为每克吸附剂中吸附该物质的质量)和亚甲基蓝吸附率,结果如图1。当活化剂浓度较低时,SAC的碘吸附率和亚甲基蓝吸附率随活化剂浓度的增大而提高。由于活化剂能够脱除水分和减缓焦油的产生,其浓度越高,抑制效果越明显,制得碳质吸附剂的孔隙结构越丰富,吸附性能越好。

  • 图1 活化剂浓度对SAC吸附性能的影响

  • Fig.1 Effects of activator concentrations on SAC adsorption properties

  • 当活化剂浓度过高,污泥中有机物的脱水缩合作用过度,造成已有孔隙发生坍塌[11-12];同时在炭化过程中会有过量的ZnCl2 颗粒残留,且在酸洗操作中很难除尽,最终堵塞孔结构,导致SAC吸附性能下降[13]

  • 2.2 炭化时间对SAC吸附性能的影响

  • 改变炭化时间,考察制得SAC的碘吸附率和亚甲基蓝吸附率,结果见图2。可以看出,随着炭化时间延长,碘值和亚甲基蓝值的点分布趋势均表现为先增后降,且在炭化时间60min时吸附性能最佳, SAC碘吸附率为882.68×10-3,亚甲基蓝吸附率为50.3×10-3

  • 图2 不同炭化时间对SAC吸附性能的影响

  • Fig.2 Effects of different carbonization time on SAC adsorption properties

  • 这是由于炭化时间较短时,活化剂和原料接触不充分,没有起到润胀、氧化脱水的作用。随着炭化时间不断增长,已经形成的孔道遭到破坏,大分子染料进入活性炭孔道的阻力增大[14]

  • 2.3 炭化温度对SAC吸附性能的影响

  • 改变炭化温度,探究制得SAC的碘吸附率和亚甲基蓝吸附率,结果见图3。

  • 图3 炭化温度对SAC吸附性能的影响

  • Fig.3 Effects of carbonization temperature on SAC adsorption properties

  • SAC的碘吸附率呈现先上升后逐渐平稳的趋势,亚甲基蓝吸附率先升后降。升温过程中,挥发分以气体形式释放,孔结构逐渐形成[15]。当温度继续上升时,活化剂挥发严重,其有效用量减少,使SAC灰分增加。同时,高温炭化会使吸附剂表面孔结构被严重烧失,孔交联结构坍塌,促使多个微孔合并, 致使性能降低。

  • 由图4看出,污泥的失重过程可分为3个步骤(微分热重(DTG) 曲线说明其失重速率的变化)。由于吸附水和毛细水的蒸发,失重(TG)曲线上出现了32~255℃的初始重量损失7.89%。 255~535℃ 的第2次失重是由于溶解水、CO2 的释放和有机物的分解引起的。在TG曲线上显示了535~800℃的最终失重率为3.91%,可能是由于热解过程中释放出来的二氧化碳和二氧化硫所致。由DTG曲线可知,300℃时失重速率最快,因此选择在该温度下热解1h,使CO2 大量释放及有机物分解;在550℃ 热解1h,此时炭化速率最快,炭损失最少,同时能够有效保留活性炭的孔道结构。经高温热解后,制得的污泥基活性炭的失重率仅为5.9%,物质的热稳定性有了明显的提高,可应用于废水处理中。

  • 图4 污泥和污泥基活性炭的热重分析图

  • Fig.4 DTG and TG images of SS and SAC

  • 2.4 酸洗溶液浓度对SAC吸附性能的影响

  • 测得在不同酸洗溶液浓度下SAC的碘吸附率和亚甲基蓝吸附率,结果见图5。经灰分分析发现, 水洗样品的灰分质量分数为42.7%,而酸洗样品灰分质量分数降为34.9%,表明酸洗过程起到了除去粗产品中灰分的效果。

  • 当酸洗液浓度高于2mol/L时,碘吸附率逐渐下降,对亚甲基蓝的吸附率不再升高。这是由于低浓度酸洗会减少碱性金属氧化物和无机盐含量,增加活性炭的比表面积和比孔容积,使得孔隙结构暴露出来[16-18]。酸洗液浓度过高会带入酸性杂质,使得活性炭表面的酸碱性发生变化,从而对带正电荷的亚甲基蓝吸附率降低。

  • 图5 不同酸洗溶液浓度对SAC吸附性能的影响

  • Fig.5 Effects of different pickling solution concentration on SAC adsorption properties

  • 2.5 扫描电镜

  • 活化剂浓度3mol/L,活化时间60min,炭化温度550℃,酸洗液浓度2mol/L为最佳制备条件。对该条件下所得SAC进行形貌测试,结果见图6,其中图6(a)、(b)为污泥,( c)、( d)为污泥基活性炭。可以看出:污泥结构紧密,没有孔道结构;SAC有明显的疏松层状,结构粗糙,其表面密布着大量中孔及大孔,凹凸不平;SAC褶皱和缺陷中具有大量微孔存在。 SAC表面不规则结构、发达的孔隙预示着其具有较高的吸附能力。

  • 图6 污泥和污泥基活性炭的扫描电镜

  • Fig.6 SEM images of sludge and SAC

  • 2.6 N2 吸附-脱附等温线

  • 污泥基活性炭N2 吸附-脱附等温线和孔径分布见图7。可以看出,SAC的等温线为Ⅳ型和滞后型H4。相对压力较小时,曲线呈向上趋势,吸附率快速攀升。随着相对压力继续增大,利用毛细凝聚作用, 吸附线持续上升。吸脱附曲线中间段存在回滞环,表明SAC出现毛细凝聚现象,具有介孔结构。相对压力提升到最大时,吸附质的吸附层数增多,最终没有观察到明确的饱和平台,说明材料的孔结构不规整。

  • 图7 污泥基活性炭N2 吸附-脱附等温线和孔径分布

  • Fig.7 N2 adsorption-desorption isotherm and pore size distribution of SAC

  • SAC的比表面积(SBET)为1 800.11m 2/g,微孔体积(Vμ)为0.840cm 3/g,占总孔体积(VT)的81.63%。介孔体积( VM) 为0.052cm 3/g,平均孔径(Dp) 为3.862nm。可知SAC比表面积大,孔道结构发达,存在着丰富微孔结构,适合于吸附染料污染物。

  • 2.7 SAC在亚甲基蓝染料废水中的应用

  • 2.7.1 SAC吸附影响因素

  • 对亚甲基蓝模拟废水进行吸附实验, 探究SAC对有机染料废水的处理能力。由表1可得, SAC的吸附率高于文献中椰壳基活性炭、花生壳基活性炭和商业活性炭等,吸附能力明显更强。对于初始浓度较高的溶液体系,存在着大量能够被吸附的吸附质分子,从而有更强的驱动力去克服溶液和吸附剂之间的传质阻力,亚甲基蓝分子更容易被SAC吸附。

  • 表1 不同废弃物吸附材料对亚甲基蓝的最大吸附率

  • Table1 Maximum adsorption capacities of MB onto various adsorbents

  • 2.7.2 吸附等温线

  • 吸附平衡实验中一般用Langmuir和Freundlich曲线拟合吸附等温模型[23]

  • Langmuir方程:

  • Ceqe=1bQm+1QmCe
    (2)
  • Freundlich公式:

  • lnqe=lnKF+1nlnCe
    (3)
  • 式中,Ce 为平衡质量浓度,mg/L;KFnbQm 均为常数,其中 Qm 为理论最大吸附率。

  • 利用实验数据,根据式(2)、(3)拟合得到SAC吸附亚甲基蓝的2类等温线,结果见图8。可以看出,Langmuir模型对吸附过程的拟合度更高,该吸附过程在单分子层表面上发生吸附[24],亚甲基蓝理论饱和吸附率为205.22×10-3

  • 图8 25℃时SAC吸附MB的吸附等温线模型

  • Fig.8 Adsorption isotherm model of MB on SAC at 25℃

  • 2.7.3 吸附动力学

  • 考察吸附时间所对应的亚甲基蓝吸附率,根据准一级动力学方程和准二级动力学方程作图[25],得到动力学方程拟合曲线(图9)和回归数据(表2)。相关系数 R1 2 均小于 R2 2,即吸附过程更符合准二级动力学模型。亚甲基蓝分子先利用液膜扩散接触到吸附剂外表面,然后通过表面大孔进入内孔道;最后在吸附剂颗粒内部发生内扩散。

  • 准一级动力学方程:

  • lnqe-qt=lnqe-k1t
    (4)
  • 准二级动力学方程:

  • tqt=1k2qe2+tqe
    (5)
  • 式中,qtt 时刻吸附率, 10-3;k1k2 分别为准一、准二级动力学速率常数;t 为吸附时间,min。

  • 图9 SAC吸附MB的动力学模型

  • Fig.9 Adsorption kinetics model of MB on SAC

  • 表2 SAC吸附MB的动力学模型参数

  • Table2 Kinetic parameters of MB adsorbed by SAC

  • 为探究活性炭吸附亚甲基蓝的速率控制步骤, 用内扩散( IPD) 模型拟合吸附过程。常用WeberMorris公式计算:

  • qt=Kidt1/2+k0
    (6)
  • 式中,Kid 为内扩散速率常数,mg/(g·min 0.5);k0 为常数。

  • 不同亚甲基蓝质量浓度下IPD拟合曲线如图10所示,曲线分为两个阶段且未过原点,说明SAC吸附亚甲基蓝的过程由多个步骤组成。首先亚甲基蓝分子从溶液中扩散到SAC外表面,为膜扩散过程。随后再扩散到SAC内部微孔孔道中,在微孔表面发生吸附作用。

  • 图10 SAC吸附MB的内扩散模型

  • Fig.10 IPD of MB on SAC

  • 由图10可知,膜扩散速率明显大于微孔扩散速率,即 Kid1>Kid2,说明吸附过程中微孔内扩散为速率控制步骤,而材料具有的丰富微孔结构能够显著增加扩散动力。

  • 2.7.4 吸附热力学

  • 为研究SAC吸附MB的热力学机制,对吉布斯自由能变 ΔG 0 、焓变 ΔH 0 、熵变 ΔS 0 等热力学参数进行计算:

  • Kd=qeCe
    (7)
  • lnKd=ΔS0R-ΔH0RT;
    (8)
  • ΔG0=ΔH0-TΔS0.
    (9)
  • 式中,Kd 为分布系数;R 为气体常数,8.314J/(mol ·K);T 为吸附温度,K

  • 热力学计算结果见表3。可以看出, ΔH 0 为49.36kJ/mol,表明SAC吸附亚甲基蓝过程吸热。 ΔS 0 为正值,说明吸附过程中SAC表面的无序程度增大。吸附过程的类别可根据吉布斯自由能变判断。发生物理吸附时 ΔG 0 为-20~0kJ/mol;发生化学吸附时 ΔG 0 为-400~-80kJ/mol。不同温度下 ΔG 0 都处于-11.47~-19.91kJ/mol,表明吸附过程为自发进行的物理吸附。

  • 表3 SAC吸附MB的热力学模型参数

  • Table3 Thermodynamic parameters of MB adsorbed by SAC32-55060

  • 2.7.5 再生性能

  • 将吸附实验得到的SAC进行热再生处理,样品在60℃干燥24h后,放入马弗炉中300℃ 煅烧1h。根据再生次数,将样品分别记为SAC-R1、SACR2、SAC-R3,并用于吸附亚甲基蓝,结果见图11。

  • 图11 不同初始质量浓度SAC、SAC-R的亚甲基蓝去除率

  • Fig.11 Removal rate of MB by SAC and SAC-R at different initial mass fraction

  • 可以看出,对于不同初始质量浓度的亚甲基蓝溶液, SAC-R的吸附性能呈现出缓慢衰减的趋势。这是由于在使用和再生过程中,材料的孔道有一定程度的坍塌或堵塞。但多次再生后的污泥基活性炭对于亚甲基蓝的去除率仍高于80%,具有较好的重复使用性能,可以实现多次利用的实际需求。

  • 3 结论

  • (1)以3mol/L氯化锌溶液为活化剂,在炭化温度550℃、炭化时间60min、HCl浓度为2mol/L酸洗条件下,制备得到的污泥基活性炭比表面积高达1 800.11m 2/g,平均孔径为3.862nm。

  • (2)污泥基活性炭吸附和再生性能良好,可用于处理亚甲基蓝染料废水,吸附过程符合Langmuir模型和准二级动力学。

  • (3)吸附染料过程受多个扩散步骤影响,且微孔内扩散为速率控制步骤。与商业活性炭相比,污泥基活性炭低廉的成本和高吸附率更具优势。

  • 参考文献

    • [1] 安连财,韩久放,章应辉,等.多孔有机聚合物吸附分离水体系中有机污染物研究和应用进展[J].应用化学,2018,35(9):1019-1025.AN Liancai,HAN Jiufang,ZHANG Yinghui,et al.Research and application progress on porous organic polymers for adsorption and separation of organic pollutants in water system [J].Chinese Journal of Applied Chemistry,2018,35(9):1019-1025.

    • [2] 康媛媛,郭泽清,周剑平.MoS2/Na2Fe2Ti 6O16 的水热制备及吸附性能[J].高等学校化学学报,2018,39(7):1364-1370.KANG Yuanyuan,GUO Zeqing,ZHOU Jianping.Hydrothermal preparation and adsorption property of MoS2/Na2Fe2Ti 6O16 [J].Chemical Journal of Chinese Universities,2018,39(7):1364-1370.

    • [3] 张巍.膨润土吸附水中有机污染物的应用进展[J].化工环保,2018,38(3):267-274.ZHANG Wei.Application progress in bentonite to adsorb organic pollutants in water [J].Environmental Protection of Chemical Industry,2018,38(3):267-274.

    • [4] FERNANDEZ J,BONASTRE J,MOLINA J,et al.Electrochemical study on an activated carbon cloth modified by cyclic voltammetry with polypyrrole/anthra-quinone sulfonate and reduced graphene oxide as electrode for energy storage [J].European Polymer Journal,2018,103:179-186.

    • [5] 南国枝,范维玉.用活性炭脱除石脑油中氯化物[J].中国石油大学学报(自然科学版),2010,34(2):159-162.NAN Guozhi,FAN Weiyu.Removal of chlorides in naphtha using active carbon [J].Journal of China University of Petroleum Edition of Natrual Science(Edition of Natural Science),2010,34(2):159-162.

    • [6] TEO E Y L,MUNIANDY L,NG E P,et al.High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J].Electrochimica Acta,2016,192:110-119.

    • [7] 任爱玲,王启山,郭斌.污泥活性炭的结构特征及表面分形分析[J].化学学报,2006,64(10):1068-1072.REN Ailing,WANG Qishan,GUO Bin.Structure characterization and surface fractal analysis of sludge activated carbon [J].Acta Chimica Sinica,2006,64(10):1068-1072.

    • [8] SILVA T L,RONIX A,PEZOTI O,et al.Mesoporous activated carbon from industrial laundry sewage sludge:adsorption studies of reactive dye Remazol Brilliant Blue R [J].Chemical Engineering Journal,2016,303:467-476.

    • [9] USHIKI I,KIKUCHI K,SATO Y,et al.Adsorption equilibria of VOCs(n-octane,propylene glycol monomethyl ether,ethanol,and 2-propanol)on activated carbon under supercritical carbon dioxide conditions [J].Fluid Phase Equilibria,2018,462:59-64.

    • [10] WONG S,YAC̍COB N A N,NGADI N,et al.From pollutant to solution of wastewater pollution:synthesis of activated carbon from textile sludge for dye adsorption [J].Chinese Journal of Chemical Engineering,2018,26(4):870-878.

    • [11] MENENDEZ J A,INGUANZO M,PIS J J.Microwaveinduced pyrolysis of sewage sludge [J].Water Research,2002,36(13):3261-3264.

    • [12] ROZADA F,OTERO M,MORAN A,et al.Adsorption of heavy metals onto sewage sludge-derived materials [J].Bioresource Technology,2008,99(14):6332-6338.

    • [13] SMITH K M,FOWLER G D,PULLKET S,et al.Sewage sludge-based adsorbents:a review of their production,properties and use in water treatment applications [J].Water Research,2009,43(10):2569-2594.

    • [14] MARTIN M J,ARTOLA A,BALAGUER M D,et al.Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions [J].Chemical Engineering Journal,2003,94(3):231-239.

    • [15] YU X,WANG S,ZHANG J.Preparation of high adsorption performance activated carbon by pyrolysis of waste polyester fabric[J].Journal of Materials Science,2018,53(7):5458-5466.

    • [16] NUITHITIKUL K,SRIKHUN S,HIRUNPRADITKOON S.Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon [J].Bioresource Technology,2010,101(1):426-429.

    • [17] TEIXEIRA V G,COUTINHO F M B,GOMES A S.The most important methods for the characterization of porosity of styrene-divinylbenzene based resins [J].Quimica Nova,2001,24(6):808-818.

    • [18] WANG S,ZHU Z H.Effects of acidic treatment of activated carbons on dye adsorption [J].Dyes and Pigments,2007,75(2):306-314.

    • [19] KAVITHA D,NAMASIVAYAM C.Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J].Bioresource Technology,2007,98(1):14-21.

    • [20] KUMAR K V,PORKODI K.Relation between some two-and three-parameter isotherm models for the sorption of methylene blue onto lemon peel[J].Journal of Hazardous Materials,2006,138(3):633-635.

    • [21] GONG R,LI M,YANG C,et al.Removal of cationic dyes from aqueous solution by adsorption on peanut hull [J].Journal of Hazardous Materials,2005,121(1):248-250.

    • [22] HAMEED B H,AHMAD A A.Batch adsorption of methylene blue from aqueous solution by garlic peel,an agricultural waste biomass [J].Journal of hazardous materials,2009,164(2/3):870-875.

    • [23] MANEERUNG T,LIEW J,DAI Y,et al.Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption:kinetics,isotherms and thermodynamic studies[J].Bioresource Technology,2016,200:350-359.

    • [24] BARKA N,OUZAOUIT K,ABDENNOURI M,et al.Dried prickly pear cactus(Opuntia ficus indica)cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions [J].Journal of the Taiwan Institute of Chemical Engineers,2013,44(1):52-60.

    • [25] 宋华,王登,宋华林,等.Ag/TiO-2-NaY 吸附苯并噻吩热力学和动力学研究[J].中国石油大学学报(自然科学版),2012,36(6):158-163,171.SONG Hua,WANG Deng,SONG Hualin,et al.Thermodynamics and kinetics studies on adsorption of benzothiophene onto Ag/TiO2-NaY zeolite [J].Journal of China University of Petroleum(Edition of Natrual Science),2012,36(6):158-163,171.

  • 参考文献

    • [1] 安连财,韩久放,章应辉,等.多孔有机聚合物吸附分离水体系中有机污染物研究和应用进展[J].应用化学,2018,35(9):1019-1025.AN Liancai,HAN Jiufang,ZHANG Yinghui,et al.Research and application progress on porous organic polymers for adsorption and separation of organic pollutants in water system [J].Chinese Journal of Applied Chemistry,2018,35(9):1019-1025.

    • [2] 康媛媛,郭泽清,周剑平.MoS2/Na2Fe2Ti 6O16 的水热制备及吸附性能[J].高等学校化学学报,2018,39(7):1364-1370.KANG Yuanyuan,GUO Zeqing,ZHOU Jianping.Hydrothermal preparation and adsorption property of MoS2/Na2Fe2Ti 6O16 [J].Chemical Journal of Chinese Universities,2018,39(7):1364-1370.

    • [3] 张巍.膨润土吸附水中有机污染物的应用进展[J].化工环保,2018,38(3):267-274.ZHANG Wei.Application progress in bentonite to adsorb organic pollutants in water [J].Environmental Protection of Chemical Industry,2018,38(3):267-274.

    • [4] FERNANDEZ J,BONASTRE J,MOLINA J,et al.Electrochemical study on an activated carbon cloth modified by cyclic voltammetry with polypyrrole/anthra-quinone sulfonate and reduced graphene oxide as electrode for energy storage [J].European Polymer Journal,2018,103:179-186.

    • [5] 南国枝,范维玉.用活性炭脱除石脑油中氯化物[J].中国石油大学学报(自然科学版),2010,34(2):159-162.NAN Guozhi,FAN Weiyu.Removal of chlorides in naphtha using active carbon [J].Journal of China University of Petroleum Edition of Natrual Science(Edition of Natural Science),2010,34(2):159-162.

    • [6] TEO E Y L,MUNIANDY L,NG E P,et al.High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J].Electrochimica Acta,2016,192:110-119.

    • [7] 任爱玲,王启山,郭斌.污泥活性炭的结构特征及表面分形分析[J].化学学报,2006,64(10):1068-1072.REN Ailing,WANG Qishan,GUO Bin.Structure characterization and surface fractal analysis of sludge activated carbon [J].Acta Chimica Sinica,2006,64(10):1068-1072.

    • [8] SILVA T L,RONIX A,PEZOTI O,et al.Mesoporous activated carbon from industrial laundry sewage sludge:adsorption studies of reactive dye Remazol Brilliant Blue R [J].Chemical Engineering Journal,2016,303:467-476.

    • [9] USHIKI I,KIKUCHI K,SATO Y,et al.Adsorption equilibria of VOCs(n-octane,propylene glycol monomethyl ether,ethanol,and 2-propanol)on activated carbon under supercritical carbon dioxide conditions [J].Fluid Phase Equilibria,2018,462:59-64.

    • [10] WONG S,YAC̍COB N A N,NGADI N,et al.From pollutant to solution of wastewater pollution:synthesis of activated carbon from textile sludge for dye adsorption [J].Chinese Journal of Chemical Engineering,2018,26(4):870-878.

    • [11] MENENDEZ J A,INGUANZO M,PIS J J.Microwaveinduced pyrolysis of sewage sludge [J].Water Research,2002,36(13):3261-3264.

    • [12] ROZADA F,OTERO M,MORAN A,et al.Adsorption of heavy metals onto sewage sludge-derived materials [J].Bioresource Technology,2008,99(14):6332-6338.

    • [13] SMITH K M,FOWLER G D,PULLKET S,et al.Sewage sludge-based adsorbents:a review of their production,properties and use in water treatment applications [J].Water Research,2009,43(10):2569-2594.

    • [14] MARTIN M J,ARTOLA A,BALAGUER M D,et al.Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions [J].Chemical Engineering Journal,2003,94(3):231-239.

    • [15] YU X,WANG S,ZHANG J.Preparation of high adsorption performance activated carbon by pyrolysis of waste polyester fabric[J].Journal of Materials Science,2018,53(7):5458-5466.

    • [16] NUITHITIKUL K,SRIKHUN S,HIRUNPRADITKOON S.Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon [J].Bioresource Technology,2010,101(1):426-429.

    • [17] TEIXEIRA V G,COUTINHO F M B,GOMES A S.The most important methods for the characterization of porosity of styrene-divinylbenzene based resins [J].Quimica Nova,2001,24(6):808-818.

    • [18] WANG S,ZHU Z H.Effects of acidic treatment of activated carbons on dye adsorption [J].Dyes and Pigments,2007,75(2):306-314.

    • [19] KAVITHA D,NAMASIVAYAM C.Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J].Bioresource Technology,2007,98(1):14-21.

    • [20] KUMAR K V,PORKODI K.Relation between some two-and three-parameter isotherm models for the sorption of methylene blue onto lemon peel[J].Journal of Hazardous Materials,2006,138(3):633-635.

    • [21] GONG R,LI M,YANG C,et al.Removal of cationic dyes from aqueous solution by adsorption on peanut hull [J].Journal of Hazardous Materials,2005,121(1):248-250.

    • [22] HAMEED B H,AHMAD A A.Batch adsorption of methylene blue from aqueous solution by garlic peel,an agricultural waste biomass [J].Journal of hazardous materials,2009,164(2/3):870-875.

    • [23] MANEERUNG T,LIEW J,DAI Y,et al.Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption:kinetics,isotherms and thermodynamic studies[J].Bioresource Technology,2016,200:350-359.

    • [24] BARKA N,OUZAOUIT K,ABDENNOURI M,et al.Dried prickly pear cactus(Opuntia ficus indica)cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions [J].Journal of the Taiwan Institute of Chemical Engineers,2013,44(1):52-60.

    • [25] 宋华,王登,宋华林,等.Ag/TiO-2-NaY 吸附苯并噻吩热力学和动力学研究[J].中国石油大学学报(自然科学版),2012,36(6):158-163,171.SONG Hua,WANG Deng,SONG Hualin,et al.Thermodynamics and kinetics studies on adsorption of benzothiophene onto Ag/TiO2-NaY zeolite [J].Journal of China University of Petroleum(Edition of Natrual Science),2012,36(6):158-163,171.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983496 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计