en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

付云芝(1966-),女,教授,博士,博士生导师,研究方向为功能纳米材料。E-mail:yzhfu@hainanu.edu.cn。

通信作者:

付云芝(1966-),女,教授,博士,博士生导师,研究方向为功能纳米材料。E-mail:yzhfu@hainanu.edu.cn。

中图分类号:O 643.38

文献标识码:A

文章编号:1673-5005(2024)01-0176-06

DOI:10.3969/j.issn.1673-5005.2024.01.019

参考文献 1
付云芝,黄康康,林彬,等.鲜芦荟提取液中C-TiO2的制备及可见光下氧氟沙星的降解[J].中国石油大学学报(自然科学版),2022,46(5)177-182.FU Yunzhi,HUANG Kangkang,LIN Bin,et al.Preparation of C-TiO2 from fresh aloe extract and degradation of ofloxacin by visible light[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):177-182.
参考文献 2
顾学林,刘洪利,刘宇童,等.钙镁复配药剂对污水的除磷脱氮作用[J].中国石油大学学报(自然科学版),2019,43(2):163-170.GU Xuelin,LIU Hongli,LIU Yutong,et al.Removal of phosphorus and nitrogen from sewage by calcium and magnesium compounding agent [J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(2):163-170.
参考文献 3
ZHANG X F,ZHU X Y,FENG J J,et al.Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction [J].Applied Surface Science,2018,428:798-808.
参考文献 4
BORDBAR M,NEGAHDAR N,NASROLLAHZADEH M.Leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B [J].Separation and Purification Technology,2018,191:295-300.
参考文献 5
DANESHVAR N,BEHNAJADY M A,ZORRIYEH ASGHAR Y.Photooxidative degradation of 4-nitrophenol(4-NP)in UV/H2O2 process:influence of operational parameters and reaction mechanism [J].Journal of Hazardous Materials,2007,139(2):275-279.
参考文献 6
NAG S,PRAMANIK A,CHATTOPADHYAY D,et al.Green-fabrication of gold nanomaterials using Staphylococcus warneri from Sundarbans estuary:an effective recyclable nanocatalyst for degrading nitro aromatic pollutants [J].Environmental Science and Pollution Research,2018,25(3):2331-2349.
参考文献 7
MEZIANE D,BENADDA-KORDJANI A,NEZZAL G,et al.Para-nitrophenol reduction on solvothermally prepared cobalt@silica core-shell catalysts [J].Reaction Kinetics,Mechanisms and Catalysis,2017,122(2):1145-1158.
参考文献 8
LIU Y,ZHANG Y Y,KOU Q W,et al.Eco-friendly seeded Fe3O4-Ag nanocrystals:a new type of highly efficient and low cost catalyst for methylene blue reduction [J].RSC Advances,2018,8(4):2209-2218.
参考文献 9
ATAEE-ESFAHANI H,WANG L,NEMOTO Y,et al.Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts [J].Chemistry of Materials,2010,22(23):6310-6318.
参考文献 10
CHEN X,CAI Z,CHEN X,et al.AuPd bimetallic nanoparticles decorated on graphene nanosheets:their green synthesis,growth mechanism and high catalytic ability in 4-nitrophenol reduction [J].Journal of Materials Chemistry A,2014,2(16):5668-5674.
参考文献 11
SANGILI A,ANNALAKSHMI M,CHEN S-M,et al.Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol [J].Composites Part B:Engineering,2019,162:33-42.
参考文献 12
EVANGELISTA V,ACOSTA B,MIRIDONOV S,et al.Highly active Au-CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol [J].Applied Catalysis B:Environmental,2015,166-167:518-528.
参考文献 13
JANA S,KONAR S,MITRA B C,et al.Fabrication of a new heterostructure Au/Pt/SnO2:an excellent catalyst for fast reduction of para-nitrophenol and visible light assisted photodegradation of dyes [J].Materials Research Bulletin,2021,141:111351.
参考文献 14
YAN F,SUN R.Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol [J].Materials Research Bulletin,2014,57:293-299.
参考文献 15
XIAO F,QIN Y,WANG N,et al.Towards mass production of Au nanoparticles supported on montmorillonite microspheres for catalytic reduction of 4-nitrophenol [J].Applied Clay Science,2018,166:74-79.
参考文献 16
GUO Y,ZHOU Q,CHEN X,et al.Near-infrared response Pt-tipped Au nanorods/g-C3N4 realizes photolysis of water to produce hydrogen [J].Journal of Materials Science & Technology,2022,119:53-60.
参考文献 17
FENNELL J,HE D,TANYI A M,et al.A selective blocking method to control the overgrowth of Pt on Au nanorods [J].Journal of the American Chemical Society,2013,135(17):6554-6561.
参考文献 18
LIU J,WANG Z,WANG Q,et al.Porphyrin-based covalent triazine framework and its carbonized derivative as catalyst scaffold of Au and Ag nanoparticles for 4-nitrophenol reduction [J].Microporous and Mesoporous Materials,2022,330:111611.
参考文献 19
SINGH B,LAFFIR F,MCCORMAC T,et al.PtAu/C based bimetallic nanocomposites for non-enzymatic electrochemical glucose detection [J].Sensors and Actuators B:Chemical,2010,150(1):80-92.
参考文献 20
SUN L,SUN X,ZHENG Y,et al.Fabrication and characterization of core-shell polystyrene/polyaniline/Au composites and their catalytic properties for the reduction of 4-nitrophenol [J].Synthetic Metals,2017,224:1-6.
参考文献 21
AYODHYA D,VEERABHADRAM G.Influence of g-C3N4 and g-C3N4 nanosheets supported CuS coupled system with effect of pH on the catalytic activity of 4-NP reduction using NaBH4 [J].Flat Chem,2019,14:100088.
参考文献 22
WANG C,YANG L,YUAN X,et al.Fabrication of Ag nanoparticles supported on amino-functionalized peeled-watermelon structured silica-coated nano-Fe3O4 with enhanced catalytic activity for reduction of 4-nitrophenol [J].Colloid and Interface Science Communications,2021,45:100521.
参考文献 23
MA J,DENG H,ZHANG Z,et al.Facile synthesis of Ag3PO4/PPy/PANI ternary composites for efficient catalytic reduction of 4-nitrophenol and 2-nitroaniline [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,632:127774.
参考文献 24
TONGSAKUL D,NISHIMURA S,EBITANI K.Platinum/gold alloy nanoparticles-supported hydrotalcite catalyst for selective aerobic oxidation of polyols in base-free aqueous solution at room temperature [J].Acs Catalysis,2013,3(10):2199-2207.
参考文献 25
LÜ Z S,ZHU X Y,MENG H B,et al.One-pot synthesis of highly branched Pt@ Ag core-shell nanoparticles as a recyclable catalyst with dramatically boosting the catalytic performance for 4-nitrophenol reduction [J].Journal of colloid and interface science,2019,538:349-356.
目录contents

    摘要

    采用种子生长法制备了长径比约为4的金纳米棒(AuNRs),并将铂负载其两端制备出尖端Pt负载的纳米Au棒(Pt-AuNRs)。采用紫外-可见分光光度计、透射电子显微镜和X射线光电子能谱等一系列常规表征手段对AuNRs和Pt-AuNRs的物化性质进行表征及分析。研究AuNRs和Pt-AuNRs作为催化剂在NaBH4存在下催化还原4-硝基苯酚(4-NP)的性能。首次提出Pt-AuNRs催化还原4-NP机制。结果表明:500-Pt-AuNRs催化剂表现出最好的催化性能,速率常数Kapp = 0.3836 min-1,是AuNRs催化剂的4.7倍; Pt-AuNRs特殊的异质结构以及高表面活性和稳定性,有助于BH-4在其表面的高效吸附和电子转移。

    Abstract

    Gold nanorods (AuNRs) with aspect ratio of about 4 were prepared by the seed growth method, and Pt were loaded on gold nanorods by KI etching method to prepare Pt-Au nanorods (Pt-AuNRs). A series of conventional characterizations like UV-Vis spectrophotometry, transmission electron microscopy, and X-ray photoelectron spectroscopy were used to identify the physicochemical properties of AuNRs and Pt-AuNRs. The catalytic reduction of 4-nitrophenol (4-NP) with AuNRs and Pt-AuNRs as catalysts in the presence of NaBH4 was studied. The mechanism of Pt-AuNRs catalytic reduction of 4-NP was proposed for the first time. The results show that 500-Pt-AuNRs catalyst presents the best catalytic performance, and the rate constant Kapp = 0.3836 min-1, which is 4.7 times that of AuNRs catalyst. The special heterostructure, high surface activity and stability of Pt-AuNRs contribute to the high adsorption and electron transfer of BH-4 on its surface.

    关键词

    AuNRsPt-AuNRs4-硝基苯酚催化还原

  • C-TiO2可光催化降解水环境中的抗生素污染物[1],钙镁复配药剂可对污水进行除磷脱氮[2]。污水中的硝基苯酚是最难降解的污染物之一[3-4],而4-硝基苯酚(4-NP)及其衍生物是在杀虫剂以及染料生产过程中形成的[5]。因此将4-NP转移到无害的产品上(如4-氨基苯酚(4-AP))被认为是一个有价值的反应[6-7]。4-AP还是合成各种医药和塑料制品的重要工业前体[8]。在常温下硼氢化钠(NaBH4)催化还原4-NP直接合成4-AP受到广泛关注[9]。即使在NaBH4存在下,单独将4-NP还原为4-AP也是一个非常缓慢的反应。贵金属纳米催化剂已被用于在NaBH4存在下还原4-NP。单分散在石墨烯纳米片上的超细金钯纳米粒子(AuPdNPs/GNs),反应速率常数可达到0.867 min-1[10],用单宁酸包覆的Fe3O4表面修饰Ag纳米粒子合成的TA@Fe3O4-AgNPs核壳纳米杂化材料,反应速率常数达到了0.713 min-1[11],Au-CeO2@ZrO2纳米材料反应速率常数可达到0.0241 s-1[12],Au/Pt/SnO2异质结反应速率常数可达到0.58 min-1[13], Fe3O4/Au纳米复合材料反应速率常数可达到0.437 min-1[14],球形金纳米粒子负载蒙脱土(Au@Mt)微球反应速率常数可达到0.95 min-1[15]。笔者采用种子生长法精准制备长径比约为4的AuNRs,并将不同量的铂负载到AuNRs尖端制备出Pt-AuNRs。在室温下研究直接催化还原4-NP合成4-AP,同时用紫外-可见分光光度计监测其还原过程。通过考察催化剂的催化性能选择最优复合材料。

  • 1 试验

  • 1.1 试验试剂和仪器

  • 试验试剂:氯金酸(HAuCl4),抗坏血酸(AA),硝酸银(AgNO3),氯铂酸(H2PtCl6),中国国药集团;硼氢化钠(NaBH4)和浓盐酸均购自西陇科学;十六烷基三甲基溴化铵(CTAB),油酸钠(NaOL),4-NP,均购自麦克林公司;去离子水,实验室自制。

  • 试验仪器:T6新世纪紫外-可见分光光度计,北京普析;JEM-2100型透射电子显微镜(TEM),日本电子公司;Axis Supra型X射线光电子能谱仪,岛津公司。

  • 1.2 种子生长法制备AuNRs溶胶

  • AuNRs的合成参考Guo等[16]的种子生长法。

  • 配制种子溶液。常温常压下,将1 mL HAuCl4溶液(0.5 mmol/L)加入到1 mL CTAB溶液(0.2 mol/L)中,然后搅拌5 min使其充分混合,溶液显橘黄色。再向其中加入0.12 mL NaBH4(0.01 mol/L,现配现用),搅拌2 min,溶液从橘黄色变为褐色,常温静置2 h使其老化生长。

  • 配制生长溶液。常温常压下,称取7 g CTAB和1.234 g NaOL加入到250 mL 去离子水中,搅拌加热使其充分溶解,制得的溶液作为保护剂。量取25 mL制备的保护剂于烧杯中,向其中加入1.5 mL AgNO3溶液(4 mmol/L),搅拌15 min。加入50 mL HAuCl4溶液(1 mmol/L),搅拌90 min,溶液逐渐从橘黄色变为无色。后加入150 μL浓盐酸,搅拌15 min后,加入150 μL AA溶液(0.0788 mol/L),搅拌30 s,得到生长溶液。

  • 量取80 μL制备好的种子溶液加入到生长溶液中,搅拌40 s后,静置生长12 h,得到的AuNRs溶胶备用。

  • 1.3 Pt-AuNRs复合材料的制备

  • 常温常压下取10 mL制备好的AuNRs溶胶放入圆底烧瓶中,加入10 mL 去离子水,搅拌10 min。加入一定量(50、100、200、300、400、500和600 μL)1% H2PtCl6溶液,搅拌30 min。加入250 μL AA溶液(0.078 8 mol/L),搅拌20 min。将混合物放入60℃烘箱中,反应12 h,即可得到Pt-AuNRs水溶胶,分别标记为50-Pt-AuNRs、100-Pt-AuNRs、200-Pt-AuNRs、300-Pt-AuNRs、400-Pt-AuNRs、500-Pt-AuNRs和600-Pt-AuNRs。

  • 1.4 催化活性评价

  • 将制备的AuNRs和Pt-AuNRs离心水洗3次后重新分散在去离子水中,用于NaBH4催化还原4-NP生成4-AP的反应,研究其催化性能。取0.1 mL 4-NP溶液(1 mmol/L)溶于2.5 mL去离子水中,加入0.1 mL NaBH4溶液(0.2 mol/L),再加入0.05 mL 催化剂,同时用紫外可见分光光度计每隔4 min记录一次吸光度,波长范围为200~500 nm。

  • 2 结果分析

  • 2.1 等离子共振

  • 图1为AuNRs和Pt-AuNRs的等离子共振特征吸收峰。可以看出,由于AuNRs具有独特的各向异性结构,在光谱中显示出了2个等离子共振吸收峰,分别为横向等离子共振吸收峰(515 nm)和纵向的等离子共振吸收峰(850 nm)。而Pt-AuNRs的纵向等离子吸收峰出现明显的红移。随着H2PtCl6溶液的加入量的增加,纵向等离子吸收峰红移越明显,且峰强减弱。吸收峰发生变化可能是因为Pt纳米粒子的作用,使得AuNRs的尺寸及纵横比发生改变,进而使AuNRs的吸收峰发生了红移且峰强减弱。当H2PtCl6溶液的加入量为500和600 μL时,已经无法在紫外-可见分光光度计上观察到Pt-AuNRs的纵向等离子吸收峰。

  • 图1 AuNRs和Pt-AuNRs的UV-Vis特征谱图

  • Fig.1 UV-Vis spectra and photos of AuNRs and Pt-AuNRs

  • 2.2 TEM

  • AuNRs和Pt-AuNRs的TEM谱图见图2。从图2(a)看出,AuNRs形貌均一,长度主要集中在74~78 nm,宽度主要集中在18~20 nm,长径比约为4。从图2(b)~(d)看出,纳米Pt颗粒集中负载在AuNRs尖端,分散均匀,纳米Pt颗粒逐粒依附到AuNRs的两端,且Pt-AuNRs呈现哑铃状,这主要是因为封端剂CTAB在AuNRs的侧面吸附,制止了Pt4+在侧面的吸附,进而阻止了Pt颗粒在侧面的形成[16]。与侧面相比,棒端面具有更多的“悬空键”,具有最大的比表面积以及比表面能,因而更有利于Pt4+的吸附进而被还原沉积。此外一旦Pt在棒上成核,由于Pt具有更高的内聚能、表面能以及晶格参数与Au不匹配,导致晶格应变,因此热力学上更倾向于在Pt上继续沉积Pt,而不是在Au上额外沉积Pt [17]。随着H2PtCl6的加入量逐渐增多,负载在AuNRs尖端的纳米Pt颗粒也随之增多,样品500-Pt-AuNRs中,有少量的纳米Pt颗粒没有吸附在AuNRs上,而是单独成形成了小颗粒,粒径大约在3 nm(图3)。

  • 图2 AuNRs和Pt-AuNRs的TEM谱图

  • Fig.2 TEM images of AuNRs and Pt-AuNRs

  • 图3为样品200-Pt-AuNRs的EDS图谱。可以看出,Au原子以棒状的形式出现在内部,Pt原子主要分布在AuNRs的外围尖端部分,形状像哑铃一样。

  • 图3 Pt-AuNRs中Au和Pt元素的EDS谱图

  • Fig.3 EDS mappings of Au and Pt elements from Pt-AuNRs

  • 2.3 XPS

  • 用X射线光电子能谱(XPS)分析AuNRs和200-Pt-AuNRs的化学结构。结果见图4。图4(a)中AuNRs的Au 4f光谱中87.4和83.7 eV两处的峰谱分别归属于Au0中的Au 4f5/2和Au 4f7/2[18],200-Pt-AuNRs的Au 4f光谱与AuNRs的Au 4f基本一致,证明AuNRs沉积纳米Pt后仍旧很稳定。图4(b)中200-Pt-AuNRs的Pt 4f光谱中74.0和70.6 eV两处的峰谱分别归属于Pt 4f5/2和Pt 4f7/2[19],进一步证明纳米Pt颗粒在AuNRs上形成了Pt-AuNRs颗粒。

  • 2.4 催化性能

  • 考察AuNRs和Pt-AuNRs催化剂在NaBH4辅助下还原4-NP合成4-AP的催化性能和动力学性质,结果见图5。从图5(a)看出,在317 nm处的峰为4-NP的特征吸收峰,在加入NaBH4溶液后,该吸收峰从317 nm红移到400 nm,且吸收强度明显增强,这表明4-NP被转化为4-硝基苯酚阴离子[20]。由图5(b)看出,36 min内在298 nm处出现一个新的吸收峰,而400 nm处的吸收峰强度逐渐减弱,这与4-NP转化成4-AP有关系[21],298 nm处的峰强度随反应时间的延长而增大。4-NP在36 min内完全转化为4-AP。为提高催化效率,在AuNRs表面沉积了不同量的纳米Pt,进行4-NP的催化还原反应探究。由图5(c)看出,8 min内将4-NP完全还原为4-AP。用与制备Pt-AuNRs同样的方法制备出了纯Pt纳米颗粒,并进行催化还原4-NP的试验。由图5(d)可以很明显看出,在没有任何催化剂的情况下,4-NP的浓度几乎没有变化,即4-NP几乎没有转化为4-AP,当一定浓度的AuNRs加入后,该曲线中4-NP的浓度随时间变化逐渐降低,但直到35 min后才反应完全,同样纯Pt纳米颗粒对还原4-NP也有一定的催化效果,与AuNRs相比较,其催化效果略为好转,但也是到了35 min后才反应完全。将纳米Pt负载到AuNRs上之后,催化效率与AuNRs和纯Pt颗粒相比有了明显提高,8 min内4-NP的浓度几乎为0。随着H2PtCl6的加入量增多,催化还原4-NP所需要的时间逐渐减少。50-Pt-AuNRs和100-Pt-AuNRs可在24 min内将4-NP还原为4-AP。而加入200~600 μL的H2PtCl6溶液形成的Pt-AuNRs催化剂,在8 min内将4-NP完全还原为4-AP。为比较催化速率,根据4-NP合成4-AP还原反应的动力学方程-ln(c/c0)= Kappt[22] 来计算动力学速率常数Kapp,其中cc0分别为4-NP在时间t和0时的浓度,mol/L,可由其相应的吸光度值得到。动力学测试表明,该反应符合准一级动力学方程。由图5(e)看出,随着H2PtCl6的加入量逐渐增多,速率常数逐渐增大,样品500-Pt-AuNRs的速率常数为最大值,Kapp = 0.3836 min-1。500-Pt-AuNRs表现出很好的催化还原行为,为AuNRs(Kapp=0.0813 min-1)的4.7倍。因此,Pt-AuNRs是一种有高效还原4-NP还原催化剂。对于催化剂来说,探索其稳定性和可回收性非常重要。在相同的操作条件下,将500-Pt-AuNRs催化剂重新用于循环测试中(图5(f))。试验中催化剂被回收和重复使用至少5次,转换效率几乎保持不变,这些结果充分证明所制备的催化剂具有良好的稳定性和可回收性。

  • 图4 AuNRs和Pt-AuNRs的XPS能谱图

  • Fig.4 XPS spectrum of AuNRs and Pt-AuNRs

  • 图5 NaBH4辅助还原4-NP合成4-AP的催化性能及动力学结果

  • Fig.5 Catalytic performance and kinetic results of NaBH4 assisted reduction of 4-NP to synthesize4-AP

  • 2.5 催化还原机制

  • 上述结果表明,在NaBH4存在下,AuNRs和Pt-AuNRs作为催化剂还原4-NP具有明显的反应效果,反应机理如图6所示。首先,NaBH4水解为BH-4,4-NP被转化为4-硝基苯酚阴离子,这二者均带负电,两种离子间的排斥作用使得该还原反应的能垒极高,因此在无催化剂条件下很难自发进行。而AuNRs和Pt-AuNRs是良好的电子接受体,4-硝基苯酚阴离子和BH-4可以吸附在催化剂表面,从而极大地降低了反应能垒。同时NaBH4水解生成的活性氢和电子(e-)可以在催化剂表面转移到4-硝基苯酚阴离子上,这里产生的H2被释放到催化剂表面,除去催化剂表面的氧化层或杂质,促进了催化剂的活化 [23],BH-4在水溶液中转化为BO-2,-NO2快速还原为-NH2,实现了4-NP转化为4-AP的目的。Pt-AuNRs作为优异的催化剂,其催化机制为① 纳米 Pt在AuNR上是以异质结构存在的,Pt和Au在催化反应中起协同作用,Au原子与相邻的Pt原子之间进行电子转移 [24],电子会从Au表面转移到附近的Pt原子上,导致电子富集到Pt原子上,这促进了电子从BH-4转移到4-硝基苯酚阴离子;② 特殊的哑铃结构为4-NP还原提供了丰富的缺陷和粗糙的表面 [25],使其具有更多的催化反应的活性位点。

  • 图6 4-NP在Pt-AuNRs上的催化还原机制

  • Fig.6 Mechanism of 4-NP catalytic reduction on Pt-AuNRs

  • 3 结论

  • (1)在NaBH4的存在下,500-Pt-AuNRs表现出优异的催化性能,在8 min内即可将4-NP还原为4-AP,反应速率常数为0.3836 min-1。与AuNRs相比,500-Pt-AuNRs的催化活性显著提高,是AuNRs的4.7倍。

  • (2)Pt-AuNRs特殊的异质结构以及高表面活性和稳定性,有助于BH-4在其表面的高吸附和电子转移。

  • 参考文献

    • [1] 付云芝,黄康康,林彬,等.鲜芦荟提取液中C-TiO2的制备及可见光下氧氟沙星的降解[J].中国石油大学学报(自然科学版),2022,46(5)177-182.FU Yunzhi,HUANG Kangkang,LIN Bin,et al.Preparation of C-TiO2 from fresh aloe extract and degradation of ofloxacin by visible light[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):177-182.

    • [2] 顾学林,刘洪利,刘宇童,等.钙镁复配药剂对污水的除磷脱氮作用[J].中国石油大学学报(自然科学版),2019,43(2):163-170.GU Xuelin,LIU Hongli,LIU Yutong,et al.Removal of phosphorus and nitrogen from sewage by calcium and magnesium compounding agent [J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(2):163-170.

    • [3] ZHANG X F,ZHU X Y,FENG J J,et al.Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction [J].Applied Surface Science,2018,428:798-808.

    • [4] BORDBAR M,NEGAHDAR N,NASROLLAHZADEH M.Leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B [J].Separation and Purification Technology,2018,191:295-300.

    • [5] DANESHVAR N,BEHNAJADY M A,ZORRIYEH ASGHAR Y.Photooxidative degradation of 4-nitrophenol(4-NP)in UV/H2O2 process:influence of operational parameters and reaction mechanism [J].Journal of Hazardous Materials,2007,139(2):275-279.

    • [6] NAG S,PRAMANIK A,CHATTOPADHYAY D,et al.Green-fabrication of gold nanomaterials using Staphylococcus warneri from Sundarbans estuary:an effective recyclable nanocatalyst for degrading nitro aromatic pollutants [J].Environmental Science and Pollution Research,2018,25(3):2331-2349.

    • [7] MEZIANE D,BENADDA-KORDJANI A,NEZZAL G,et al.Para-nitrophenol reduction on solvothermally prepared cobalt@silica core-shell catalysts [J].Reaction Kinetics,Mechanisms and Catalysis,2017,122(2):1145-1158.

    • [8] LIU Y,ZHANG Y Y,KOU Q W,et al.Eco-friendly seeded Fe3O4-Ag nanocrystals:a new type of highly efficient and low cost catalyst for methylene blue reduction [J].RSC Advances,2018,8(4):2209-2218.

    • [9] ATAEE-ESFAHANI H,WANG L,NEMOTO Y,et al.Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts [J].Chemistry of Materials,2010,22(23):6310-6318.

    • [10] CHEN X,CAI Z,CHEN X,et al.AuPd bimetallic nanoparticles decorated on graphene nanosheets:their green synthesis,growth mechanism and high catalytic ability in 4-nitrophenol reduction [J].Journal of Materials Chemistry A,2014,2(16):5668-5674.

    • [11] SANGILI A,ANNALAKSHMI M,CHEN S-M,et al.Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol [J].Composites Part B:Engineering,2019,162:33-42.

    • [12] EVANGELISTA V,ACOSTA B,MIRIDONOV S,et al.Highly active Au-CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol [J].Applied Catalysis B:Environmental,2015,166-167:518-528.

    • [13] JANA S,KONAR S,MITRA B C,et al.Fabrication of a new heterostructure Au/Pt/SnO2:an excellent catalyst for fast reduction of para-nitrophenol and visible light assisted photodegradation of dyes [J].Materials Research Bulletin,2021,141:111351.

    • [14] YAN F,SUN R.Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol [J].Materials Research Bulletin,2014,57:293-299.

    • [15] XIAO F,QIN Y,WANG N,et al.Towards mass production of Au nanoparticles supported on montmorillonite microspheres for catalytic reduction of 4-nitrophenol [J].Applied Clay Science,2018,166:74-79.

    • [16] GUO Y,ZHOU Q,CHEN X,et al.Near-infrared response Pt-tipped Au nanorods/g-C3N4 realizes photolysis of water to produce hydrogen [J].Journal of Materials Science & Technology,2022,119:53-60.

    • [17] FENNELL J,HE D,TANYI A M,et al.A selective blocking method to control the overgrowth of Pt on Au nanorods [J].Journal of the American Chemical Society,2013,135(17):6554-6561.

    • [18] LIU J,WANG Z,WANG Q,et al.Porphyrin-based covalent triazine framework and its carbonized derivative as catalyst scaffold of Au and Ag nanoparticles for 4-nitrophenol reduction [J].Microporous and Mesoporous Materials,2022,330:111611.

    • [19] SINGH B,LAFFIR F,MCCORMAC T,et al.PtAu/C based bimetallic nanocomposites for non-enzymatic electrochemical glucose detection [J].Sensors and Actuators B:Chemical,2010,150(1):80-92.

    • [20] SUN L,SUN X,ZHENG Y,et al.Fabrication and characterization of core-shell polystyrene/polyaniline/Au composites and their catalytic properties for the reduction of 4-nitrophenol [J].Synthetic Metals,2017,224:1-6.

    • [21] AYODHYA D,VEERABHADRAM G.Influence of g-C3N4 and g-C3N4 nanosheets supported CuS coupled system with effect of pH on the catalytic activity of 4-NP reduction using NaBH4 [J].Flat Chem,2019,14:100088.

    • [22] WANG C,YANG L,YUAN X,et al.Fabrication of Ag nanoparticles supported on amino-functionalized peeled-watermelon structured silica-coated nano-Fe3O4 with enhanced catalytic activity for reduction of 4-nitrophenol [J].Colloid and Interface Science Communications,2021,45:100521.

    • [23] MA J,DENG H,ZHANG Z,et al.Facile synthesis of Ag3PO4/PPy/PANI ternary composites for efficient catalytic reduction of 4-nitrophenol and 2-nitroaniline [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,632:127774.

    • [24] TONGSAKUL D,NISHIMURA S,EBITANI K.Platinum/gold alloy nanoparticles-supported hydrotalcite catalyst for selective aerobic oxidation of polyols in base-free aqueous solution at room temperature [J].Acs Catalysis,2013,3(10):2199-2207.

    • [25] LÜ Z S,ZHU X Y,MENG H B,et al.One-pot synthesis of highly branched Pt@ Ag core-shell nanoparticles as a recyclable catalyst with dramatically boosting the catalytic performance for 4-nitrophenol reduction [J].Journal of colloid and interface science,2019,538:349-356.

  • 参考文献

    • [1] 付云芝,黄康康,林彬,等.鲜芦荟提取液中C-TiO2的制备及可见光下氧氟沙星的降解[J].中国石油大学学报(自然科学版),2022,46(5)177-182.FU Yunzhi,HUANG Kangkang,LIN Bin,et al.Preparation of C-TiO2 from fresh aloe extract and degradation of ofloxacin by visible light[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):177-182.

    • [2] 顾学林,刘洪利,刘宇童,等.钙镁复配药剂对污水的除磷脱氮作用[J].中国石油大学学报(自然科学版),2019,43(2):163-170.GU Xuelin,LIU Hongli,LIU Yutong,et al.Removal of phosphorus and nitrogen from sewage by calcium and magnesium compounding agent [J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(2):163-170.

    • [3] ZHANG X F,ZHU X Y,FENG J J,et al.Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction [J].Applied Surface Science,2018,428:798-808.

    • [4] BORDBAR M,NEGAHDAR N,NASROLLAHZADEH M.Leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B [J].Separation and Purification Technology,2018,191:295-300.

    • [5] DANESHVAR N,BEHNAJADY M A,ZORRIYEH ASGHAR Y.Photooxidative degradation of 4-nitrophenol(4-NP)in UV/H2O2 process:influence of operational parameters and reaction mechanism [J].Journal of Hazardous Materials,2007,139(2):275-279.

    • [6] NAG S,PRAMANIK A,CHATTOPADHYAY D,et al.Green-fabrication of gold nanomaterials using Staphylococcus warneri from Sundarbans estuary:an effective recyclable nanocatalyst for degrading nitro aromatic pollutants [J].Environmental Science and Pollution Research,2018,25(3):2331-2349.

    • [7] MEZIANE D,BENADDA-KORDJANI A,NEZZAL G,et al.Para-nitrophenol reduction on solvothermally prepared cobalt@silica core-shell catalysts [J].Reaction Kinetics,Mechanisms and Catalysis,2017,122(2):1145-1158.

    • [8] LIU Y,ZHANG Y Y,KOU Q W,et al.Eco-friendly seeded Fe3O4-Ag nanocrystals:a new type of highly efficient and low cost catalyst for methylene blue reduction [J].RSC Advances,2018,8(4):2209-2218.

    • [9] ATAEE-ESFAHANI H,WANG L,NEMOTO Y,et al.Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts [J].Chemistry of Materials,2010,22(23):6310-6318.

    • [10] CHEN X,CAI Z,CHEN X,et al.AuPd bimetallic nanoparticles decorated on graphene nanosheets:their green synthesis,growth mechanism and high catalytic ability in 4-nitrophenol reduction [J].Journal of Materials Chemistry A,2014,2(16):5668-5674.

    • [11] SANGILI A,ANNALAKSHMI M,CHEN S-M,et al.Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol [J].Composites Part B:Engineering,2019,162:33-42.

    • [12] EVANGELISTA V,ACOSTA B,MIRIDONOV S,et al.Highly active Au-CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol [J].Applied Catalysis B:Environmental,2015,166-167:518-528.

    • [13] JANA S,KONAR S,MITRA B C,et al.Fabrication of a new heterostructure Au/Pt/SnO2:an excellent catalyst for fast reduction of para-nitrophenol and visible light assisted photodegradation of dyes [J].Materials Research Bulletin,2021,141:111351.

    • [14] YAN F,SUN R.Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol [J].Materials Research Bulletin,2014,57:293-299.

    • [15] XIAO F,QIN Y,WANG N,et al.Towards mass production of Au nanoparticles supported on montmorillonite microspheres for catalytic reduction of 4-nitrophenol [J].Applied Clay Science,2018,166:74-79.

    • [16] GUO Y,ZHOU Q,CHEN X,et al.Near-infrared response Pt-tipped Au nanorods/g-C3N4 realizes photolysis of water to produce hydrogen [J].Journal of Materials Science & Technology,2022,119:53-60.

    • [17] FENNELL J,HE D,TANYI A M,et al.A selective blocking method to control the overgrowth of Pt on Au nanorods [J].Journal of the American Chemical Society,2013,135(17):6554-6561.

    • [18] LIU J,WANG Z,WANG Q,et al.Porphyrin-based covalent triazine framework and its carbonized derivative as catalyst scaffold of Au and Ag nanoparticles for 4-nitrophenol reduction [J].Microporous and Mesoporous Materials,2022,330:111611.

    • [19] SINGH B,LAFFIR F,MCCORMAC T,et al.PtAu/C based bimetallic nanocomposites for non-enzymatic electrochemical glucose detection [J].Sensors and Actuators B:Chemical,2010,150(1):80-92.

    • [20] SUN L,SUN X,ZHENG Y,et al.Fabrication and characterization of core-shell polystyrene/polyaniline/Au composites and their catalytic properties for the reduction of 4-nitrophenol [J].Synthetic Metals,2017,224:1-6.

    • [21] AYODHYA D,VEERABHADRAM G.Influence of g-C3N4 and g-C3N4 nanosheets supported CuS coupled system with effect of pH on the catalytic activity of 4-NP reduction using NaBH4 [J].Flat Chem,2019,14:100088.

    • [22] WANG C,YANG L,YUAN X,et al.Fabrication of Ag nanoparticles supported on amino-functionalized peeled-watermelon structured silica-coated nano-Fe3O4 with enhanced catalytic activity for reduction of 4-nitrophenol [J].Colloid and Interface Science Communications,2021,45:100521.

    • [23] MA J,DENG H,ZHANG Z,et al.Facile synthesis of Ag3PO4/PPy/PANI ternary composites for efficient catalytic reduction of 4-nitrophenol and 2-nitroaniline [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,632:127774.

    • [24] TONGSAKUL D,NISHIMURA S,EBITANI K.Platinum/gold alloy nanoparticles-supported hydrotalcite catalyst for selective aerobic oxidation of polyols in base-free aqueous solution at room temperature [J].Acs Catalysis,2013,3(10):2199-2207.

    • [25] LÜ Z S,ZHU X Y,MENG H B,et al.One-pot synthesis of highly branched Pt@ Ag core-shell nanoparticles as a recyclable catalyst with dramatically boosting the catalytic performance for 4-nitrophenol reduction [J].Journal of colloid and interface science,2019,538:349-356.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计