en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李忠涛(1983-)男,教授,博士,博士生导师,研究方向为储能材料和纳米复合材料。E-mail:liztao@upc.edu.cn。

通信作者:

李忠涛(1983-)男,教授,博士,博士生导师,研究方向为储能材料和纳米复合材料。E-mail:liztao@upc.edu.cn。

中图分类号:TQ 050.4

文献标识码:A

文章编号:1673-5005(2024)01-0182-07

DOI:10.3969/j.issn.1673-5005.2024.01.020

参考文献 1
LEE D H,LEE B H,SINHA A K,et al.Engineering titanium dioxide nanostructures for enhanced lithium-ion storage[J].Journal of the American Chemical Society,2018,140(48):16676-16684.
参考文献 2
XIA S,WANG Y,LIU Y,et al.Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties[J].Chemical Engineering Journal,2018,332:431-439.
参考文献 3
WANG Y Y,ZHANG X Q,ZHOU M Y,et al.Mechanism,quantitative characterization,and inhibition of corrosion in lithium batteries[J].Nano Research Energy,2023,2:e9120046.
参考文献 4
YE H,LI Y,Towards practical lean-electrolyte Li-S batteries:highly solvating electrolytes or sparingly solvating electrolytes?[J].Nano Research Energy,2022,1:e9120012.
参考文献 5
JIN J,WANG Z,WANG R,et al.Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping[J].Advanced Functional Materials,2019,29(12):1807441.
参考文献 6
LI P,HWANG J Y,SUN Y K.Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J].ACS Nano,2019,13(2):2624-2633.
参考文献 7
GE H,FENG X,LIU D,et al.Recent advances and perspectives for Zn-based batteries:Zn anode and electrolyte[J].Nano Research Energy,2023,2:e9120039.
参考文献 8
孙良良,熊宏旭,丁国鹏,等.直接液化石油气火焰燃料电池的制备与性能[J].中国石油大学学报(自然科学版),2022,46(5):183-188.SUN Liangliang,XIONG Hongxu,DING Guopeng,et al.Preparation and performance of direct liquefied petroleum gas fuel cells[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):183-188.
参考文献 9
LIU Y,SUN Z,SUN X,et al.Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms[J].Angewandte Chemie International Edition,2020,59(6):2473-2482.
参考文献 10
WANG W,GANG Y,HU Z,et al.Reversible structural evolution of sodium-rich rhombohedral prussian blue for sodium-ion batteries[J].Nature Communication,2020,11:980.
参考文献 11
JIAN Z,ZHAO L,PAN H,et al.Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J].Electrochemistry Communications,2012,14(1):86-89.
参考文献 12
PAL S K,THIRUPATHI R,CHAKRABARTY S,et al.Improving the electrochemical performance of Na3V2(PO4)3 cathode in na-ion batteries by Si-doping[J].ACS Applied Energy Materials,2020,3(12):12054-12065.
参考文献 13
YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682.
参考文献 14
PAN H,HU Y S,CHEN L.Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy & Environmental Science,2013,6(8):2338-2360.
参考文献 15
ZHANG X,RUI X,CHEN D,et al.Na3V2(PO4)3:an advanced cathode for sodium-ion batteries[J].Nanoscale,2019,11(6):2556-2576.
参考文献 16
LÜ W J,HUANG Z,YIN Y X,et al.Strategies to build high-rate cathode materials for Na-ion batteries[J].Chem Nano Mat,2019,5(10):1253-1262.
参考文献 17
PARK G O,YOON J,SHON J K,et al.Discovering a dual-buffer effect for lithium storage:durable nanostructured ordered mesoporous co-sn intermetallic electrodes[J].Advanced Functional Materials,2016,26(17):2800-2808.
参考文献 18
HOU H,QIU X,WEI W,et al.Carbon anode materials for advanced sodium-ion batteries[J].Advanced Energy Materials,2017,7(24):1602898.
参考文献 19
CHENG Y,YI Z,WANG C,et al.Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries[J].Chemical Engineering Journal,2017,330:1035-1043.
参考文献 20
WEI W,YANG S,ZHOU H,et al.3D Graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage[J].Advanced Materials,2013,25(21):2909-2914.
参考文献 21
CHEN Y,SONG B,LI M,et al.Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications[J].Advanced Functional Materials,2014,24(3):319-326.
参考文献 22
WANG N,LIU Q,LI Y,et al.Self-crosslink assisted synthesis of 3d porous branch-like Fe3O4/C hybrids for high-performance lithium/sodium-ion batteries[J].RSC Advances,2017,7(79):50307-50316.
参考文献 23
WEI Z,WANG D,LI M,et al.Fabrication of hierarchical potassium titanium phosphate spheroids:a host material for sodium-ion and potassium-ion storage[J].Advanced Energy Materials,2018,8(27):201801102.
参考文献 24
PAN J,CHEN S,FU Q,et al.Layered-structure SbPO4/reduced graphene oxide:an advanced anode material for sodium ion batteries[J].ACS Nano,2018,12(12):12869-12878.
参考文献 25
NI Q,BAI Y,WU F,et al.Polyanion-type electrode materials for sodium-ion batteries[J].Advanced Science,2017,4(3):1600275.
参考文献 26
FANG Y,CHEN Z,XIAO L,et al.Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries[J].Small,2018,14(9):1703116.
参考文献 27
LI Z,DONG Y,FENG J,et al.Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-Ion batteries[J].ACS Nano,2019,13(8):9227-9236.
参考文献 28
FENG J,WANG H,HU Z,et al.Hollow Co2SiO4 microcube with amorphous structure as anode material for construction of high performance lithium ion battery[J].Ceramics International,2019,45(10):13369-13375.
参考文献 29
YANG X,ZHANG R Y,ZHAO J,et al.Amorphous tin-based composite oxide:a high-rate and ultralong-life sodium ion storage material[J].Advanced Energy Materials,2018,8(8):1701827.
参考文献 30
ZHANG X J,ZHANG Y,ZHOU Z,et al.Core-shell Ni0.5TiOPO4/C composites as anode materials in Li ion batteries[J].Electrochimica Acta,2011,56(5):2290-2294.
参考文献 31
PAN J,YU K,MAO H,et al.Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage[J].Chemical Engineering Journal,2020,380:122624.
参考文献 32
LI Z,FENG J,HU H,et al.An amorphous tin-based nanohybrid for ultra-stable sodium storage[J].Journal of Materials Chemistry A,2018,6(39):18920-18927.
目录contents

    摘要

    提出一种利用聚合物合成焦磷酸铌NbP1.8O7的简易方法,采用聚合物辅助一步煅烧,通过调控含磷聚合物的加入量来制备纯相的焦磷酸铌,调控煅烧升温速率以进一步提高负极材料的无定型化,考察电极材料的电化学性能。结果表明:优化后的电极材料电化学储钠性能优异;制备5 ℃/min升温速率下的趋于无定形的焦磷酸铌在1000 mA/g的电流密度下循环5000圈后可逆放电比容量仍有164.6 mA·h/g,在2000 mA/g的大电流密度下循环5000圈后仍有101.37 mA·h/g的高可逆比容量。

    Abstract

    A simple method for the synthesis of niobium pyrophosphate NbP1.8O7 using polymer was proposed. A polymer-assisted one-step calcination was used to prepare pure-phase niobium pyrophosphate by regulating the addition amount of phosphorus-containing polymer. The calcination heating rate was adjusted to further improve the amorphization of the anode material. Then the electrochemical performance of the electrode material was investigated. The results show that the optimized electrode materials present excellent electrochemical sodium storage performance. Niobium pyrophosphate tends to be more amorphous at temperature rise rate of 5 ℃/min and exhibits better electrochemical performance. It has a reversible discharge capacity of 164.6 and 101.37 mA·h/g after 5000 cycles at a current density of 1000 mA/g and 2000 mA/g.

  • 锂离子电池(LIBs)由于具有高能量密度和功率密度已被广泛研究[1-4],但锂资源日益匮乏[5-8]。由于钠资源的广泛分布和相对较低的成本,可充电钠离子电池(SIBs)作为锂离子电池的替代品已成为新的研究热点[9-10]。钠离子半径较大,在电极嵌入/脱出的过程中会发生较大的体积变化,导致电极材料形变严重,循环寿命较短;其次钠离子在正负极之间传输动力学缓慢,导致倍率性能较差[11-14]。钠离子电池负极材料主要有4类:碳材料、合金、过渡金属基化合物(氧化物、硫化物、磷化物、硒化物类)和聚阴离子化合物[15-16]。碳材料中的石墨已在锂离子电池中成功商业化,其比容量约为370 mA·h/g[17]。传统石墨并不能直接用于商业化钠离子电池中。非石墨碳材料由于其C方向的无序性和平面上呈完美六角形网络的碳原子,使其保持无定形形态[18]。杂原子掺杂的碳(引入B、S、N、P等)可以提高碳材料的比容量、电解液的润湿性和电子电导率。合金类材料理论比容量较高,但在嵌钠/脱钠过程中,会发生严重的体积膨胀,最终电极粉化,导致循环稳定性差[19]。过渡金属基化合物同样也会发生严重的体积形变,最终使倍率性能和循环性能变差[20-22]。聚阴离子化合物开放的三维框架具有使钠离子容易嵌入和脱出,并且具有热力学稳定性好、离子电导率高等优势。通过与碳复合、优化结构等方式可以进一步提高其电子导电性,从而可以优化电极材料的性能[23-27]。构建无定形结构的磷酸盐/焦磷酸盐等聚阴离子化合物对于碱金属离子的储存有益,无定形结构的各向同性及短程有序,长程无序性在钠离子嵌入时会表现出较低的熵能,有利于嵌入更多的钠离子[28-31]合成了一种核壳结构的无定形磷酸锡基的纳米复合结构,高含磷量的聚合物的包覆有利于无定形结构的形成,该复合材料展现出超稳定的储钠性能[32]。笔者通过含磷聚合物辅助一步煅烧合成聚阴离子化合物焦磷酸铌NbP1.8O7用于钠离子电池负极材料,通过调控含磷聚合物的加入量来制备更纯相的焦磷酸铌,调控煅烧升温速率进一步提高负极材料的无定型化。

  • 1 试验

  • 1.1 试验试剂与仪器

  • 试验试剂:五氯化铌和六氯环三聚磷腈,上海麦克林生化科技有限公司;4,4'-二羟基二苯砜,上海阿拉丁生化科技股份有限公司;三乙胺,南京试剂有限公司;甲醇,上海国药集团化学试剂有限公司;乙二醇,浙江三鹰化学试剂有限公司;去离子水,实验室自制。

  • 仪器:电化学工作站CS350H,武汉科思特仪器股份有限公司;Land电池测试系统CT-2001A,武汉金诺电子有限公司;手套箱Lab2000,合肥科晶有限公司;多晶粉末X射线衍射仪X'Pert PRO MPD,荷兰帕纳科公司;扫描电子显微镜S4800,日本日立;透射电子显微镜JEM-2100UHR,日本电子;X射线光电子能谱仪Escalab250Xi,美国赛默飞世尔科技有限公司;氮气吸脱附等温线测定仪ASAP2020,美国麦克仪器公司。

  • 1.2 材料制备与电池组装

  • (1)NbP1.8O7/Nb2O5的制备。将1.5 g NbCl5分散在含2 mL浓盐酸的80 mL乙二醇和去离子水(V(乙二醇)∶V (水)=8∶2)的混合物中,室温磁力搅拌20 min,得到均匀分散的溶液。将所得溶液转移到高压釜中,在鼓风烘箱中140℃,溶剂热10 h。反应结束后将沉淀离心,用去离子水和无水乙醇交替洗涤3次,冷冻干燥机中干燥过夜。称取0.15 g上面得到的沉淀,经连续超声和搅拌后分散在40 mL甲醇中,得到溶液A。将300 mg六氯环三聚磷腈(HCCP)和400 mg4,4'-二羟基二苯砜,溶于10 mL甲醇,加入溶液A中。搅拌10 min后用移液枪滴加1.5 mL三乙胺,在室温下继续搅拌30 h。通过离心收集沉淀,用甲醇洗涤3次,冷冻干燥机中干燥过夜。在氩气氛围下以5℃/min的升温速率700℃煅烧2 h,得到产物NbP1.8O7/Nb2O5

  • (2)NbP1.8O7的制备。NbP1.8O7的制备如图1所示,与制备NbP1.8O7/Nb2O5类似,其他条件不变,增加聚合物的量,将2 g六氯环三聚磷腈(HCCP)和2.1 g4,4'-二羟基二苯砜,溶于50 mL甲醇,加入溶液A中。搅拌10 min后,用移液枪逐滴加入7 mL三乙胺,在室温下继续搅拌30 h。通过离心收集沉淀,用甲醇洗涤3次,冷冻干燥机中干燥过夜。在氩气氛围下以5℃/min的升温速率700℃煅烧2 h,得到最终产物NbP1.8O7,命名为NPO-5。其他条件不变,只改变升温速率,分别在1、3℃/min的升温速率下对材料进行煅烧,分别命名为NPO-1,NPO-3。

  • (3)电极片的制备及电池组装。将制备的电极材料Super P与粘结剂PVDF(聚偏二氟乙烯)质量比为8∶1∶1或7∶2∶1,充分研磨至少30 min,向混合样品中滴入适量的N-甲基吡咯烷酮(NMP)溶剂,搅拌均匀后,用刮刀将浆料均匀涂覆在铜箔集流体上,后把其放入80℃真空烘箱中,真空干燥12 h。待冷却至室温后,将其在手动冲片机上裁成直径为12 mm的电极片。以赶制的钠片为对电极,电解液为1 mol/L NaClO4+EC/DEC(体积比为1∶1)溶剂+5%(质量分数)FEC添加剂,在手套箱(H2O和O2质量分数均小于0.1×10-6)中进行CR2032扣式电池的组装。

  • 图1 NbP1.8O7的合成过程

  • Fig.1 Procedure for synthesis of NbP1.8O7

  • 2 结果分析

  • 通过X射线粉末衍射(XRD)结果发现,当聚合物PPS增加到一定量后,可以得到纯相的NbP1.8O7,晶体结构与六方晶系NbP1.8O7的标准卡片(PDF-49-1132)相对应。为了进一步对材料的性能进行优化,只改变升温速率,得到了在1、3、5℃/min的升温速率下的XRD谱图(图2(a)),低升温速率下,材料的结晶性会更好,随着升温速率的提高,材料趋于无定型化,有向非晶态转变的趋势。这可能是不同升温速率下,聚合物PPS的挥发速度不一致,高升温速率下,聚合物挥发更快,原子之间的重排结晶行为剧烈,结晶度逐渐降低,向非晶态转变,也是一种熵增加的表现,符合常规的热力学定律。

  • 图2 NbP1.8O7的成功合成与结构表征

  • Fig.2 Successful synthesis and structural characterization of NbP1.8O7

  • 图2(b)为NPO-5的Nb3d的高分辨率谱图。可以拟合为4个峰,位于210.6和208.18 eV处的峰归属于+5价Nb的Nb3d3/2和Nb3d5/2;位于211.66和207.63 eV处的峰归属于+4价Nb的Nb3d3/2和Nb3d5/2。3种不同升温速率的NbP1.8O7价态基本一致,都存在+4价和+5价的铌。另外,NPO-5比NPO-1中+4价的Nb含量多,这可能是由于升温速率高的时候结晶性差,会有更多晶体缺陷产生,导致有更多的Nb被还原以维持热力学状态下的相平衡。图2(d)中P 2p的高分辨率图谱可以看出P-O的成键方式为P—O和P=O,这些都表明高纯度NbP1.8O7的成功合成以及磷酸根与铌的强配位能力。

  • 为研究NbP1.8O7材料的比表面积,对其进行N2吸脱附测试(图2(c))。可以看出,NPO-1的比表面积为4.6 m2/g,NPO-3的比表面积为3.9 m2/g,而NPO-5的比表面积为7.5 m2/g。因此当升温速率为5℃/min的时候,NbP1.8O7的比表面积最大,这样更有利于与电解液充分接触,加速钠离子的扩散,提升该复合材料的倍率性能。

  • 为观察NbP1.8O7的形貌,对其进行SEM表征。图3(a)~(c)为3种不同升温速率下的NbP1.8O7的SEM图。可以看出,随着升温速率的升高,形貌上由于聚合物的快速分解,变得更加疏松。疏松的结构可以增加NbP1.8O7材料的比表面积,使电解液与活性物质更好的浸润,有利于缩短钠离子的扩散距离,提高材料的比容量及快充能力。同样,图3(d)~(f)为使用TEM对3种不同升温速率下的材料进行表征。TEM图与SEM图是基本对应的,NbP1.8O7属于微米级材料,比表面积较小,在满足电解液渗透的同时,还有利于减少副反应的发生。

  • 图3 三种不同升温速率下NbP1.8O7的SEM和TEM图

  • Fig.3 SEM and TEM images of NbP1.8O7 at three different warming rates

  • NPO-5的电化学性质测试与长循环稳定性测试见图4。图4(a)为相同煅烧温度,不同升温速率下NbP1.8O7在1 000 mA/g下的恒电流循环曲线。NPO-1在700圈循环以后可逆放电比容量达到177.2 mA·h/g,库伦效率接近100%;NPO-3在700圈循环以后可逆放电比容量达到183.7 mA·h/g,库伦效率接近100%;NPO-5在700圈循环以后可逆放电比容量达到206.6 mA·h/g,库伦效率接近100%。由此可以看出,NbP1.8O7在相同的煅烧温度下,如果升温速率不同,比容量是有差异的,高升温速率的材料,电化学性能更好。这可归因于升温速率越高的时候(5℃/min),材料越趋于无定形。无定形结构的各向同性及短程有序,长程无序性在钠离子嵌入时会表现出较低的熵能,有利于嵌入更多的钠离子。

  • 鉴于NPO-5在不同的升温速率中最优的长循环性能,对其在100 mA/g下进行恒电流循环测试,结果见图4(b)。可以看出,NPO-5第一次循环后的放电比容量为646.7 mA·h/g,首圈库伦效率为41.01%,100次循环后比容量为228.5 mA·h/g,基于首次充电比容量的容量保留率为86.2%。良好的电化学性能主要归功于聚阴离子化合物NbP1.8O7具有大的框架结构,当其趋于无定形结构时,各向同性促进了钠离子的扩散动力学。图4(c)为NPO-5在100 mA/g下前3圈的恒流充放电曲线,首次放电和充电比容量分别为646.7和265.2 mA·h/g。初始稍低的库伦效率是由于电解液的分解形成固体电解质界面(SEI),3圈循环以后,库伦效率逐渐超过90%,这是由于电解液的不可逆分解得到缓解,电极中的活性物质逐渐被激活。

  • NPO-5在小电流密度下具有优异的长循环性能,测试其在0.1、0.2、0.5、1、2、3和4 A/g下的倍率性能,结果见图4(d)。可以看出,NPO-5在电流密度从0.1到4 A/g的变化中,其平均充放电比容量分别为320.2、275.6、230.6、186.8、143.1、120.1和105.3 mA·h/g。当恢复到0.1 A/g的电流密度时,平均充放电比容量还能达到298.9 mA·h/g。这表明NPO-5材料在嵌钠和脱钠过程中具有良好的可逆性。图4(e)为NPO-5样品不同电流密度下的容量-电压曲线,与图4(d)中NPO-5样品的倍率性能是一致的,同时还表明该复合材料在不同倍率下的电化学极化较小。图4(f)分别为NPO-1、NPO-3和NPO-5电极在循环30圈后的阻抗图。NPO-1、NPO-3和NPO-5电极的阻抗值依次减小,表明NPO-5的电子电导率更高,这可能归因于在高的升温速率下,该复合材料中的碳材料的石墨化程度更高,导电性较好。在高的升温速率下结晶性变低,材料在低结晶状态下形成特殊的扩散路径,有利于促进钠离子的快速扩散。

  • NPO-5的倍率性能优异,考察其在大电流密度下的长循环稳定性,结果见图4(g)。可以看出,NPO-5在首次循环的放电和充电比容量分别为301.6和144.5 mA·h/g,首圈库伦效率为47.9%。在5000圈循环以后可逆放电比容量可以达到164.6 mA·h/g,库伦效率接近100%,表明NPO-5具有优异的长循环性能。图4(h)为NPO-5在2000 mA/g更大恒电流密度下循环5000圈的循环曲线。可以看出,NPO-5先在100 mA/g的电流密度下活化2圈,首次放电和充电比容量分别为489和216.5 mA·h/g,首圈库伦效率44.27%。在2000 mA/g的电流密度下5000圈循环之后仍有101.37 mA·h/g的高可逆比容量。

  • 图4 NPO-5的电化学性质测试与长循环稳定性测试

  • Fig.4 Electrochemical property test and long cycle stability test of NPO-5

  • 3 结论

  • (1)采用聚合物辅助一步煅烧可合成焦磷酸铌NbP1.8O7

  • (2)通过调控含磷聚合物的加入量来制备纯相的焦磷酸铌,调控煅烧升温速率以进一步提高负极材料的无定型化,优化后的电极材料表现出优异的电化学储钠性能。

  • (3)5℃/min升温速率下趋于无定形的焦磷酸铌在1000 mA/g的电流密度下循环5000圈后可逆放电比容量仍有164.6 mA·h/g,在 2000 mA/g的大电流密度下循环5 000圈后仍有101.37 mA·h/g的高可逆比容量。

  • 参考文献

    • [1] LEE D H,LEE B H,SINHA A K,et al.Engineering titanium dioxide nanostructures for enhanced lithium-ion storage[J].Journal of the American Chemical Society,2018,140(48):16676-16684.

    • [2] XIA S,WANG Y,LIU Y,et al.Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties[J].Chemical Engineering Journal,2018,332:431-439.

    • [3] WANG Y Y,ZHANG X Q,ZHOU M Y,et al.Mechanism,quantitative characterization,and inhibition of corrosion in lithium batteries[J].Nano Research Energy,2023,2:e9120046.

    • [4] YE H,LI Y,Towards practical lean-electrolyte Li-S batteries:highly solvating electrolytes or sparingly solvating electrolytes?[J].Nano Research Energy,2022,1:e9120012.

    • [5] JIN J,WANG Z,WANG R,et al.Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping[J].Advanced Functional Materials,2019,29(12):1807441.

    • [6] LI P,HWANG J Y,SUN Y K.Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J].ACS Nano,2019,13(2):2624-2633.

    • [7] GE H,FENG X,LIU D,et al.Recent advances and perspectives for Zn-based batteries:Zn anode and electrolyte[J].Nano Research Energy,2023,2:e9120039.

    • [8] 孙良良,熊宏旭,丁国鹏,等.直接液化石油气火焰燃料电池的制备与性能[J].中国石油大学学报(自然科学版),2022,46(5):183-188.SUN Liangliang,XIONG Hongxu,DING Guopeng,et al.Preparation and performance of direct liquefied petroleum gas fuel cells[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):183-188.

    • [9] LIU Y,SUN Z,SUN X,et al.Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms[J].Angewandte Chemie International Edition,2020,59(6):2473-2482.

    • [10] WANG W,GANG Y,HU Z,et al.Reversible structural evolution of sodium-rich rhombohedral prussian blue for sodium-ion batteries[J].Nature Communication,2020,11:980.

    • [11] JIAN Z,ZHAO L,PAN H,et al.Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J].Electrochemistry Communications,2012,14(1):86-89.

    • [12] PAL S K,THIRUPATHI R,CHAKRABARTY S,et al.Improving the electrochemical performance of Na3V2(PO4)3 cathode in na-ion batteries by Si-doping[J].ACS Applied Energy Materials,2020,3(12):12054-12065.

    • [13] YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682.

    • [14] PAN H,HU Y S,CHEN L.Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy & Environmental Science,2013,6(8):2338-2360.

    • [15] ZHANG X,RUI X,CHEN D,et al.Na3V2(PO4)3:an advanced cathode for sodium-ion batteries[J].Nanoscale,2019,11(6):2556-2576.

    • [16] LÜ W J,HUANG Z,YIN Y X,et al.Strategies to build high-rate cathode materials for Na-ion batteries[J].Chem Nano Mat,2019,5(10):1253-1262.

    • [17] PARK G O,YOON J,SHON J K,et al.Discovering a dual-buffer effect for lithium storage:durable nanostructured ordered mesoporous co-sn intermetallic electrodes[J].Advanced Functional Materials,2016,26(17):2800-2808.

    • [18] HOU H,QIU X,WEI W,et al.Carbon anode materials for advanced sodium-ion batteries[J].Advanced Energy Materials,2017,7(24):1602898.

    • [19] CHENG Y,YI Z,WANG C,et al.Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries[J].Chemical Engineering Journal,2017,330:1035-1043.

    • [20] WEI W,YANG S,ZHOU H,et al.3D Graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage[J].Advanced Materials,2013,25(21):2909-2914.

    • [21] CHEN Y,SONG B,LI M,et al.Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications[J].Advanced Functional Materials,2014,24(3):319-326.

    • [22] WANG N,LIU Q,LI Y,et al.Self-crosslink assisted synthesis of 3d porous branch-like Fe3O4/C hybrids for high-performance lithium/sodium-ion batteries[J].RSC Advances,2017,7(79):50307-50316.

    • [23] WEI Z,WANG D,LI M,et al.Fabrication of hierarchical potassium titanium phosphate spheroids:a host material for sodium-ion and potassium-ion storage[J].Advanced Energy Materials,2018,8(27):201801102.

    • [24] PAN J,CHEN S,FU Q,et al.Layered-structure SbPO4/reduced graphene oxide:an advanced anode material for sodium ion batteries[J].ACS Nano,2018,12(12):12869-12878.

    • [25] NI Q,BAI Y,WU F,et al.Polyanion-type electrode materials for sodium-ion batteries[J].Advanced Science,2017,4(3):1600275.

    • [26] FANG Y,CHEN Z,XIAO L,et al.Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries[J].Small,2018,14(9):1703116.

    • [27] LI Z,DONG Y,FENG J,et al.Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-Ion batteries[J].ACS Nano,2019,13(8):9227-9236.

    • [28] FENG J,WANG H,HU Z,et al.Hollow Co2SiO4 microcube with amorphous structure as anode material for construction of high performance lithium ion battery[J].Ceramics International,2019,45(10):13369-13375.

    • [29] YANG X,ZHANG R Y,ZHAO J,et al.Amorphous tin-based composite oxide:a high-rate and ultralong-life sodium ion storage material[J].Advanced Energy Materials,2018,8(8):1701827.

    • [30] ZHANG X J,ZHANG Y,ZHOU Z,et al.Core-shell Ni0.5TiOPO4/C composites as anode materials in Li ion batteries[J].Electrochimica Acta,2011,56(5):2290-2294.

    • [31] PAN J,YU K,MAO H,et al.Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage[J].Chemical Engineering Journal,2020,380:122624.

    • [32] LI Z,FENG J,HU H,et al.An amorphous tin-based nanohybrid for ultra-stable sodium storage[J].Journal of Materials Chemistry A,2018,6(39):18920-18927.

  • 参考文献

    • [1] LEE D H,LEE B H,SINHA A K,et al.Engineering titanium dioxide nanostructures for enhanced lithium-ion storage[J].Journal of the American Chemical Society,2018,140(48):16676-16684.

    • [2] XIA S,WANG Y,LIU Y,et al.Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties[J].Chemical Engineering Journal,2018,332:431-439.

    • [3] WANG Y Y,ZHANG X Q,ZHOU M Y,et al.Mechanism,quantitative characterization,and inhibition of corrosion in lithium batteries[J].Nano Research Energy,2023,2:e9120046.

    • [4] YE H,LI Y,Towards practical lean-electrolyte Li-S batteries:highly solvating electrolytes or sparingly solvating electrolytes?[J].Nano Research Energy,2022,1:e9120012.

    • [5] JIN J,WANG Z,WANG R,et al.Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping[J].Advanced Functional Materials,2019,29(12):1807441.

    • [6] LI P,HWANG J Y,SUN Y K.Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J].ACS Nano,2019,13(2):2624-2633.

    • [7] GE H,FENG X,LIU D,et al.Recent advances and perspectives for Zn-based batteries:Zn anode and electrolyte[J].Nano Research Energy,2023,2:e9120039.

    • [8] 孙良良,熊宏旭,丁国鹏,等.直接液化石油气火焰燃料电池的制备与性能[J].中国石油大学学报(自然科学版),2022,46(5):183-188.SUN Liangliang,XIONG Hongxu,DING Guopeng,et al.Preparation and performance of direct liquefied petroleum gas fuel cells[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):183-188.

    • [9] LIU Y,SUN Z,SUN X,et al.Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms[J].Angewandte Chemie International Edition,2020,59(6):2473-2482.

    • [10] WANG W,GANG Y,HU Z,et al.Reversible structural evolution of sodium-rich rhombohedral prussian blue for sodium-ion batteries[J].Nature Communication,2020,11:980.

    • [11] JIAN Z,ZHAO L,PAN H,et al.Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J].Electrochemistry Communications,2012,14(1):86-89.

    • [12] PAL S K,THIRUPATHI R,CHAKRABARTY S,et al.Improving the electrochemical performance of Na3V2(PO4)3 cathode in na-ion batteries by Si-doping[J].ACS Applied Energy Materials,2020,3(12):12054-12065.

    • [13] YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682.

    • [14] PAN H,HU Y S,CHEN L.Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy & Environmental Science,2013,6(8):2338-2360.

    • [15] ZHANG X,RUI X,CHEN D,et al.Na3V2(PO4)3:an advanced cathode for sodium-ion batteries[J].Nanoscale,2019,11(6):2556-2576.

    • [16] LÜ W J,HUANG Z,YIN Y X,et al.Strategies to build high-rate cathode materials for Na-ion batteries[J].Chem Nano Mat,2019,5(10):1253-1262.

    • [17] PARK G O,YOON J,SHON J K,et al.Discovering a dual-buffer effect for lithium storage:durable nanostructured ordered mesoporous co-sn intermetallic electrodes[J].Advanced Functional Materials,2016,26(17):2800-2808.

    • [18] HOU H,QIU X,WEI W,et al.Carbon anode materials for advanced sodium-ion batteries[J].Advanced Energy Materials,2017,7(24):1602898.

    • [19] CHENG Y,YI Z,WANG C,et al.Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries[J].Chemical Engineering Journal,2017,330:1035-1043.

    • [20] WEI W,YANG S,ZHOU H,et al.3D Graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage[J].Advanced Materials,2013,25(21):2909-2914.

    • [21] CHEN Y,SONG B,LI M,et al.Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications[J].Advanced Functional Materials,2014,24(3):319-326.

    • [22] WANG N,LIU Q,LI Y,et al.Self-crosslink assisted synthesis of 3d porous branch-like Fe3O4/C hybrids for high-performance lithium/sodium-ion batteries[J].RSC Advances,2017,7(79):50307-50316.

    • [23] WEI Z,WANG D,LI M,et al.Fabrication of hierarchical potassium titanium phosphate spheroids:a host material for sodium-ion and potassium-ion storage[J].Advanced Energy Materials,2018,8(27):201801102.

    • [24] PAN J,CHEN S,FU Q,et al.Layered-structure SbPO4/reduced graphene oxide:an advanced anode material for sodium ion batteries[J].ACS Nano,2018,12(12):12869-12878.

    • [25] NI Q,BAI Y,WU F,et al.Polyanion-type electrode materials for sodium-ion batteries[J].Advanced Science,2017,4(3):1600275.

    • [26] FANG Y,CHEN Z,XIAO L,et al.Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries[J].Small,2018,14(9):1703116.

    • [27] LI Z,DONG Y,FENG J,et al.Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-Ion batteries[J].ACS Nano,2019,13(8):9227-9236.

    • [28] FENG J,WANG H,HU Z,et al.Hollow Co2SiO4 microcube with amorphous structure as anode material for construction of high performance lithium ion battery[J].Ceramics International,2019,45(10):13369-13375.

    • [29] YANG X,ZHANG R Y,ZHAO J,et al.Amorphous tin-based composite oxide:a high-rate and ultralong-life sodium ion storage material[J].Advanced Energy Materials,2018,8(8):1701827.

    • [30] ZHANG X J,ZHANG Y,ZHOU Z,et al.Core-shell Ni0.5TiOPO4/C composites as anode materials in Li ion batteries[J].Electrochimica Acta,2011,56(5):2290-2294.

    • [31] PAN J,YU K,MAO H,et al.Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage[J].Chemical Engineering Journal,2020,380:122624.

    • [32] LI Z,FENG J,HU H,et al.An amorphous tin-based nanohybrid for ultra-stable sodium storage[J].Journal of Materials Chemistry A,2018,6(39):18920-18927.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计