全文快速搜索:   高级搜索

  中国石油大学学报(自然科学版)  2017, Vol. 41 Issue (2): 21-29  DOI:10.3969/j.issn.1673-5005.2017.02.003
0

引用本文 [复制中英文]

刘宗堡, 郭林源, 付晓飞, 等. 砂泥互层地层断裂带结构特征及控油作用[J]. 中国石油大学学报(自然科学版), 2017, 41(2): 21-29. DOI: 10.3969/j.issn.1673-5005.2017.02.003.
[复制中文]
LIU Zongbao, GUO Linyuan, FU Xiaofei, et al. Sandstone-mudstone interbed fault zones structure feature and controlling oil effect[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(2): 21-29. DOI: 10.3969/j.issn.1673-5005.2017.02.003.
[复制英文]

基金项目

国家自然科学基金项目(41502136);国家科技重大专项(2016ZX05054009);中国博士后基金项目(2014M551214);黑龙江省青年科学基金项目(QC2014C039)

作者简介

刘宗堡(1982-), 男, 教授, 博士生导师, 研究方向为储层沉积学与油气成藏机理。E-mail:lzbdqpi@163.com

文章历史

收稿日期:2016-10-11
砂泥互层地层断裂带结构特征及控油作用
刘宗堡1 , 郭林源1 , 付晓飞1 , 张东2 , 刘云燕3 , 方庆4 , 王海学1 , 孟令东1     
1. 东北石油大学地球科学学院, 黑龙江大庆 163318;
2. 大庆油田有限责任公司第四采油厂, 黑龙江大庆 163511;
3. 大庆油田有限责任公司第八采油厂, 黑龙江大庆 163514;
4. 大庆油田有限责任公司第二采油厂, 黑龙江大庆 163414
摘要: 通过露头区解剖、三维地震解释、测井曲线识别、岩心观察和薄片鉴定, 对松辽盆地杏北油田葡萄花油层砂泥互层地层断裂带内部结构特征进行研究; 建立基于测井曲线综合响应的断层破碎带厚度预测模型, 进而探讨断裂带结构特征对断层边部剩余油富集和开采的控制作用。结果表明:断裂带由断层核和破碎带两部分组成, 其中断层核发育泥岩涂抹的分段生长结构, 破碎带发育破碎、滑动和变形3种特征; 断层垂向上在葡Ⅰ4小层发生分段, 造成系统取心井钻遇3个断点, 其中断点1发育砂岩变形带的断层端部破碎带, 断点2发育泥岩涂抹的主断层核, 断点3发育泥质角砾岩和方解石充填泥岩裂缝的次断层核; 断层面两侧随着距断层核距离增加破碎带微构造密度和碳酸盐含量逐渐降低。
关键词: 砂泥互层地层    断裂带结构特征    控油作用    葡萄花油层    杏北油田    松辽盆地    
Sandstone-mudstone interbed fault zones structure feature and controlling oil effect
LIU Zongbao1 , GUO Linyuan1 , FU Xiaofei1 , ZHANG Dong2 , LIU Yunyan3 , FANG Qing4 , WANG Haixue1 , MENG Lingdong1     
1. Geoscience College of Northeast Petroleum University, Daqing 163318, China;
2. NO.4 Oil Production Plant of Daqing Oilfield Limited Liability Company, Daqing 163511, China;
3. NO.8 Oil Production Plant of Daqing Oilfield Limited Liability Company, Daqing 163514, China;
4. NO.2 Oil Production Plant of Daqing Oilfield Limited Liability Company, Daqing 163414, China
Abstract: By using outcrop dissection, 3-D seismic interpretation, logging curve comparison, core observation and rock thin section identification, we studied the internal structure of the fault zones in sandstone-mudstone interbed strata of the Putaohua reservoir in northern Xingbei Oilfield, Songliao Basin. Based on the comprehensive responses of well logging, a model to predict fault zone thickness was established; with it we discussed how the fault structure controlled the distribution and enrichment of remaining oil along the fault edges. Our results reveal that the fault zones are mainly composed of a fault core and the damage zones; the fault core develops segmented structure of shale smear, while damage zones show features of crushing, sliding and deformation; the fault segments vertically into PI4 stratigraphic horizon, causing the three breakpoints in the coring well drills, where breakpoint 1 develops fault tip damage zones of sandstone deformation band, breakpoint 2 develops the major fault core of shale smear, and breakpoint 3 develops argillaceous breccia and minor fault core of mudstone fractures filled by calcite. With increasing distance to the fault core, the density of minor fractures and carbonate content are gradually reduced.
Keywords: Sandstone-mudstone interbed    fault zones structure feature    controlling oil effect    Putaohua reservoir    Xingbei Oilfield    Songliao Basin    

中国东部陆上主力油田目前都已经进入高含水开发后期, 其整体表现为高含水、高采出程度、高采油速度、低储采比和低采收率的“三高二低”特征[1], 其中受断层分割影响的断块油田约为1/3, 占中国探明已开发储量的30%和探明未开发储量的40%[2]。断块油田高含水期断层边部受断层封挡和钻井少等因素影响剩余油十分富集[3], 而以往针对其剩余油研究主要考虑微幅度构造[4]、储层非均质性[5]、微观驱替实验[6]和井网注采关系[7]等, 严重忽视了断裂带结构特征及其形成的断层封闭性和破碎带微构造对剩余油形成和开采的影响, 如油田勘探开发过程中多发生钻井液泄漏、井网套损、断层两盘串水漏油和注采失衡等事故。笔者选取松辽盆地杏北油田葡萄花油层为靶区, 依托中国第一口过断裂带系统取心井(杏7-20-斜632井—断层两侧系统取心125 m), 建立砂泥互层地层断裂带内部结构地质模型及岩电关系综合响应图版, 进而分析其对断层边部剩余油富集规律和开发方式的控制作用。

1 区域地质概况

杏北油田构造上位于松辽盆地大庆长垣杏树岗构造北部, 油田开发层系包括萨尔图油层、葡萄花油层和高台子油层, 其中姚家组一段葡萄花油层为区内主力产油层位[8]。葡萄花油层储层发育盆地北部物源控制下的三角洲相沉积体, 整体表现为强物源快速充填的砂泥岩薄互层沉积序列, 垂向上细分为2个油层组、20个小层和37个单元, 其中葡Ⅰ212-葡Ⅰ33单元为三角洲分流平原亚相沉积, 其他单元为三角洲前缘亚相沉积[9]。葡萄花油层断层全部为正断层, 走向以北西向为主, 平面延伸长度介于2~5 km, 断距介于30~60 m, 断层倾角介于40°~60°; 断层平面上具有侧列叠覆特征, 组成5条北西向断层带把研究区分割成6个断块; 断层密度南部高于北部, 构造西翼高于东翼(图 1)[10]。杏北油田葡萄花油层自1966年投入开发以来, 一直采用高压注水保持油层压力的开采原则, 目前形成4套井网分注分采, 截至2013年底, 油层年注采比为1.19, 可采储量动用程度为79.18%, 综合含水率为92.96%[11]

图 1 杏北油田葡萄花油层构造特征 Fig.1 Structure character of Putaohua reservoir in Xingbei Oilfield
2 砂泥互层地层断裂带内部结构特征地质模型

断裂带是多次地震滑动产生的地质构造, 一般具有断层核和破碎带二元结构[12-16]。断层核由多个地震滑动面及其之间卷入的围岩组成, 通常在脆性地层中形成核, 而在塑性地层中发育泥岩涂抹的分段生长结构。破碎带是断层形成和发育过程中断层面两侧围岩发生变形产生的微构造区域, 划分为围岩破碎带、连接破碎带和端部破碎带三种类型; 破碎带受围岩、断距、成岩阶段等因素影响, 通常在高孔隙度砂岩中发育变形带, 在低孔隙度砂岩中发育裂缝, 泥岩中主要发育泥岩涂抹带和裂缝[17-19]。露头区表明断裂带结构通常发育不对称完整型、对称完整型和不完整型[20], 并且其规模与断距呈正相关关系[21]。杏北油田葡萄花油层断裂带结构特征见图 2

图 2 杏北油田葡萄花油层断裂带结构特征 Fig.2 Fault zone structure feature of Putaohua reservoir in Xingbei oilfield

对于砂泥互层地层而言, 砂岩通常是脆性的, 泥岩是塑性的[22]。首先进行野外露头区解剖、三维地震精细解释、系统取心井观察描述和岩石薄片鉴定, 明确断层平面和垂向分段生长机制, 进而开展断层(平面位置、断失层位、断点分布和组合样式等)质量校正[23], 然后多尺度综合厘定断裂带内部结构特征, 最终建立杏北油田葡萄花油层275断层(杏7-20—斜632井穿过断层)断裂带内部结构地质模型:①断层核和破碎带规模较小, 其中断层核受围岩影响(砂泥互层和泥质含量高)发育泥岩涂抹的分段生长结构, 破碎带发育破碎、滑动和变形3种特征[24]; ②系统取心井共钻遇3个断点, 其中断点1为断层端部破碎带(1 267.65~1 276.65 m), 发育大量单条或簇状砂岩变形带, 断点2为主断层泥岩涂抹断层核(1 318.89~1 326.09 m), 发育大量小断层和泥岩裂缝, 具有明显拖拽变形特征, 断点3为次级断层泥质角砾岩断层核(1 326.09~1 327.34 m), 发育大量泥岩裂缝, 裂缝内脉状方解石充填胶结; ③三维地震精细解释表明断层垂向上普遍发育分段生长特征, 并且断层消失和分段层位主要分布在泥质含量高的葡Ⅰ4小层, 造成取心井钻进方向与地层倾向小角度相交且岩心沿层理面破裂; ④破碎带发育3种类型微构造, 其中纯净砂岩中发育变形带, 呈单条或簇状出现造成储层物性降低, 具有肋状突出特征, 泥岩中发育单条或多条共轭型裂缝造成储层物性增高, 具有典型滑擦面特征, 混杂砂岩中发育相互切割的变形带(砂岩)和裂缝(泥岩)组合, 具有一定的破裂和变形特征, 岩心统计表明随着距断层核距离增加微构造密度和规模逐渐降低[25]; ⑤断裂带附近碳酸盐含量较高, 见层状介形虫灰岩、方解石脉充填泥岩裂缝和砂岩钙质团块胶结, 且随距断层核距离增加, 碳酸盐含量逐渐减低[26](图 3)。

图 3 275断层断裂带内部结构地质模型 Fig.3 Geological model of fault zone internal structure of fault 275
3 砂泥互层地层断裂带内部结构岩电响应关系及定量识别

断裂带结构识别主要依靠露头、岩心和地球物理等资料[27]。通过对杏7-20-斜632井厘米级岩心精细观察描述及测井曲线综合响应特征分析, 建立了砂泥互层地层断裂带内部结构岩心-测井曲线响应模型:泥岩涂抹断层核声波时差变低、深浅侧向低值、密度变高和井径一般无扩径现象; 破碎带泥岩裂缝声波时差变高、深浅侧向低值低幅差、密度低值和井径明显扩大, 但当泥岩裂缝被碳酸盐胶结声波时差降低和密度增高; 破碎带砂岩变形带声波时差微齿化、深浅侧向高幅齿化和密度变低(图 45)[28-29]。通过对研究区钻遇断裂带的21口井测井曲线对比和识别, 分别采用声波时差、深浅侧向、密度和井径等测井曲线构建反映断裂带结构特征的测井响应模型[30-32], 最终发现深浅侧向曲线变化率与断裂带结构样式吻合度较高, 能较好反映断裂带结构类型及规模, 但要去除储集层中夹层干扰(图 6)。首先采用五点法合成深浅侧向曲线变化率LCR值:

图 4 杏北油田葡萄花油层断裂带结构测井响应特征 Fig.4 Fault zone structure logging response characteristic of Putaohua reservoir in Xingbei Oilfield
图 5 断层破碎带微构造类型测井曲线交汇图 Fig.5 Logging curve intersection of fault fracture zone microstructural types
图 6 F214断层破碎带厚度测井曲线识别 Fig.6 Logging curve identify of fracture zone thickness of F214 fault
$ LCD = \Delta {X_i} = \frac{1}{4}\sum\limits_{j =-2}^1 {\left| {{X_{i + j}}-{X_{i + j + 1}}} \right|} . $ (1)

式中, Xi为测井曲线某点的测井值; Xi+j为测井曲线某点前后2点的测井值。

统计表明断层破碎带层段深浅侧向曲线变化率LCR值均大于1, 而非断层破碎带层段LCR值均小于1, 其中砂岩层段更明显, 如杏2-2-32井断层破碎带层段LCR值大于1.15, 而在非断层破碎带层段LCR值小于0.6。上述断裂带内部结构测井曲线识别和统计表明研究区发育2种类型断裂带:①对称完整型7条,破碎带-断层核-破碎带; ②不对称完整型14条,破碎带-断层核。

断层破碎带厚度与断距具有正相关性, 考虑葡萄花油层早成岩阶段晚期泥岩塑性和砂岩脆性特征, 为了消除砂泥互层地层岩性对断层破碎带厚度影响, 建立了不同岩性断层破碎带厚度与断距关系图版:泥岩段断层破碎带厚度与断距正相关性较差, 砂岩段断层破碎带厚度与断距正相关性较好, 如杏3-1-31井断层破碎带断点深度为1 132.4 m, 断失层位为葡Ⅰ33-葡Ⅱ9单元, 断距为61.8 m, 破碎带视厚度为21.2 m, 破碎带真厚度为13 m。为了预测每条断层不同断距条件下的断层破碎带厚度, 构建了断层破碎带临界厚度与断距相关性的内外包络线, 计算葡萄花油层最大断距118.4 m处断层破碎带最大厚度约为40 m(图 7)。

图 7 断层破碎带厚度与断距关系 Fig.7 Correlation of fault fracture zone thickness and displacement
4 砂泥互层地层断裂带内部结构特征及控油作用

砂泥互层地层断裂带内部结构特征对断层边部剩余油控制作用主要体现在4个方面:①断层分段生长性决定断层封闭性及其边部剩余油是否存在; ②断储配置关系及断距变化形成的正向构造决定断层边部剩余油富集部位; ③断层破碎带厚度及微构造类型决定断层边部有效钻井范围, 如砂岩变形带使储层物性降低和泥岩裂缝使储层物性增高; ④断层稳定性决定断层边部井网类型和开采强度[33]。基于上述研究成果以杏北油田葡萄花油层F250断层为例, 首先开展三维地震精细解释(1 km×1 km), 确定断层分段生长点和微幅度构造范围, 然后利用断距值和经验公式厘定断层破碎带最大厚度, 进而考虑储层砂体垂向演化序列和重点时间单元井网注采关系刻画出剩余油空间分布范围, 2013—2014年在该断层边部布署4口大位移度定向井, 初期含水率均小于80%, 日产油量为周边直井2.5倍, 且产能递减速率明显较慢, 其研究对陆相盆地断块油田高含水期增储稳产具有指导重要意义。

5 结论

(1) 砂泥互层地层断裂带普遍发育断层核和破碎带二元结构, 其中断层核在脆性地层中形成核, 在塑性地层中发育泥岩涂抹的分段生长结构; 破碎带在高孔隙度砂岩中发育变形带, 在低孔隙度砂岩中发育裂缝, 在泥岩中发育泥岩涂抹带和裂缝。

(2) 建立杏北油田葡萄花油层砂泥互层地层断裂带内部结构地质模型:断层核发育泥岩涂抹的分段生长结构, 破碎带发育破碎、滑动和变形3种特征; 断层垂向上在泥质含量高的葡Ⅰ4小层发生分段, 造成过断层面系统取心井钻遇3个断点; 破碎带发育纯净砂岩变形带、泥岩裂缝和混杂砂岩变形带-裂缝切割3种类型微构造, 且断层面两侧随着距断层核距离增加微构造密度-规模和碳酸盐含量逐渐减低。

(3) 杏北油田葡萄花油层主要发育对称完整型和不对称完整型2类断裂带结构, 其中岩性和断距是影响砂泥互层地层断层破碎带厚度的主要因素, 通常大断距条件下的砂岩层段断层破碎带厚度较大。断裂带结构特征对断层边部剩余油分布部位、富集程度和开采方式具有重要影响。

参考文献
[1]
胡文瑞. 论老油田实施二次开发工程的必要性与可行性[J]. 石油勘探与开发, 2008, 35(1): 1-5.
HU Wenrui. Necessity and feasibility of PetroChina mature field redevelopment[J]. Petroleum Exploration and Development, 2008, 35(1): 1-5.
[2]
韩大匡. 中国油气田开发现状、面临的挑战和技术发展方向[J]. 中国工程科学, 2010, 12(5): 51-57.
HAN Dakuang. Status and challenges for oil and gas field development in China and directions for the development of corresponding technologies[J]. Engineering Sciences, 2010, 12(5): 51-57.
[3]
毛伟汉, 周长利. 大庆油田断层破碎带大斜度定向井仿油基钻井液技术[J]. 价值工程, 2014, 18: 28-30.
MAO Weihan, ZHOU Changli. High angle directional well imitated oil-base drilling fluid technology in the fault fracture zone of Daqing oilfield[J]. Value Engineering, 2014, 18: 28-30.
[4]
曹彤, 郭少斌. 精细地震构造解释在油田开发中的应用[J]. 地球物理学进展, 2013, 28(4): 1893-1899.
CAO Tong, GUO Shaobin. The application of refined seismic structure interpretation in reservoir development[J]. Progress in Geophysics, 2013, 28(4): 1893-1899. DOI:10.6038/pg20130431
[5]
封从军, 单启铜, 时维成, 等. 扶余油田泉四段储层非均质性及对剩余油分布的控制[J]. 中国石油大学学报(自然科学版), 2013, 37(1): 1-7.
FENG Congjun, SHAN Qitong, SHI Weicheng, et al. Reservoirs heterogeneity and its control on remaining oil distribution of K1q4, Fuyu Oilfield[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(1): 1-7.
[6]
侯建, 邱茂鑫, 陆努, 等. 采用CT技术研究岩心剩余油微观赋存状态[J]. 石油学报, 2014, 35(2): 319-325.
HOU Jian, QIU Maoxin, LU Nu, et al. Characterization of residual oil microdistribution at pore scale using computerized tomography[J]. Acta Petrolei Sinica, 2014, 35(2): 319-325. DOI:10.7623/syxb201402012
[7]
闫百泉, 张鑫磊, 于利民, 等. 基于岩心及密井网的点坝构型与剩余油分析[J]. 石油勘探与开发, 2014, 41(5): 597-604.
YAN Baiquan, ZHANG Xinlei, YU Limin, et al. Point bar configuration and residual oil analysis based on core and dense well pattern[J]. Petroleum Exploration and Development, 2014, 41(5): 597-604. DOI:10.11698/PED.2014.05.12
[8]
宋保全, 李音, 席国兴, 等. 储层精细描述技术在杏北油田开发调整中的应用[J]. 石油学报, 2001, 22(1): 72-77.
SONG Baoquan, LI Yin, XI Guoxing, et al. The application of detailed description reservoir techniques in Xingbei area[J]. Acta Petrolei Sinica, 2001, 22(1): 72-77. DOI:10.7623/syxb200101015
[9]
单敬福, 张东, 陈岑, 等. 大庆油田杏树岗杏一、二区东部葡I332a-葡I11细层沉积体系再认识[J]. 现代地质, 2011, 25(2): 297-307.
SHAN Jingfu, ZHANG Dong, CHEN Cen, et al. Recognition PI332a-P I11 sublayers depositional system of Xing 1 and 2 eastern area in Xingshugang, Daqing Oilfield[J]. Geoscience, 2011, 25(2): 297-307.
[10]
刘威, 王玉祥, 王兴刚, 等. 杏北油田构造特征与油水井套管损坏之间的关系[J]. 大庆石油学院学报, 2003, 27(1): 7-9.
LIU Wei, WANG Yuxiang, WANG Xinggang, et al. Relationship between structure and casing sheer in Xingbei Oilfield[J]. Journal of Northeast Petroleum University, 2003, 27(1): 7-9.
[11]
周超, 尹太举, 杨乐. 杏树岗油田检查井水洗规律研究:以X6-12-JE24井为例[J]. 长江大学学报(自然科学版), 2013, 10(8): 73-76.
ZHOU Chao, YIN Taiju, YANG Le. Study on water-wash law in Xingshugang oilfield—as well X6-12-JE24[J]. Journal of Yangtze University (Natural Science Edition), 2013, 10(8): 73-76.
[12]
VERMILYE J M, SCHOLZ C H. Fault propagation and segmentation:insight from the microstructural examination of a small fault[J]. Journal of Structural Geology, 1999, 21(11): 1623-1636. DOI:10.1016/S0191-8141(99)00093-0
[13]
MCGRATH A G, DAVISON I. Damage zone geometry around fault tips[J]. Journal of Structural Geology, 1995, 17(7): 1011-1024. DOI:10.1016/0191-8141(94)00116-H
[14]
CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24: 1025-1028. DOI:10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
[15]
BERG S S, SKAR T. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah[J]. Journal of Structural Geology, 2005, 27(10): 1803-1822. DOI:10.1016/j.jsg.2005.04.012
[16]
FAULKNER D R, MITCHELL T M, HEALY D, et al. Slip on 'weak' faults by the rotation of regional stress in the fracture damage zone[J]. Nature, 2006, 444(7121): 922-925. DOI:10.1038/nature05353
[17]
COWIE P A, SCHOLZ C H. Displacement-length scaling relationship for faults: data synthesis and discussion[J]. Journal of Structural Geology, 1992, 14(10): 1149-1156. DOI:10.1016/0191-8141(92)90066-6
[18]
KNIPE R J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG, 1997, 81(2): 187-195.
[19]
KIM Y S, PEACOCK D C P, SANDERSON D J. Fault damage zones[J]. Journal of Structural Geology, 2004, 26(3): 503-517. DOI:10.1016/j.jsg.2003.08.002
[20]
FLODIN E, AYDIN A. Faults with asymmetric damage zones in sandstone, Valley of Fire State Park, southern Nevada[J]. Journal of Structural Geology, 2004, 26(5): 983-988. DOI:10.1016/j.jsg.2003.07.009
[21]
CHILDS C, MANZOCCHI T, WALSH J J, et al. A geometric model of fault zone and fault rock thickness variations[J]. Journal of Structural Geology, 2009, 31(2): 117-127. DOI:10.1016/j.jsg.2008.08.009
[22]
付晓飞, 方德庆, 吕延防, 等. 从断裂带内部结构出发评价断层垂向封闭性的方法[J]. 地球科学——中国地质大学学报, 2005, 30(3): 328-336.
FU Xiaofei, FANG Deqing, LV Yanfang, et al. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J]. Earth Science —Journal of China University of Geosciences, 2005, 30(3): 328-336.
[23]
王海学, 吕延防, 付晓飞, 等. 断裂质量校正及其在油气勘探开发中的作用[J]. 中国矿业大学学报, 2014, 43(3): 482-490.
WANG Haixue, LV Yanfang, FU Xiaofei, et al. Fault quality correction and its role in the oil and gas exploration and development[J]. Journal of China University of Mining & Technology, 2014, 43(3): 482-490.
[24]
付晓飞, 肖建华, 孟令东. 断裂在纯净砂岩中的变形机制及断裂带内部结构[J]. 吉林大学学报(地球科学版), 2014, 44(1): 25-37.
FU Xiaofei, XIAO Jianhua, MENG Lingdong. Fault deformation mechanisms and internal structure characteristics of fault zone in pure sandstone[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1): 25-37.
[25]
付晓飞, 尚小钰, 孟令东. 低孔隙岩石中断裂带内部结构及与油气成藏[J]. 中南大学学报(自然科学版), 2013, 44(6): 2428-2438.
FU Xiaofei, SHANG Xiaoyu, MENG Lingdong. Internal structure of fault zone and oil/gas reservior in low-porosity rock[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2428-2438.
[26]
高丽华, 韩作振, 韩豫, 等. 断层对砂岩胶结物和砂岩物性变化的控制作用:以惠民凹陷临南洼陷夏503井断层为例[J]. 中国科学:地球科学, 2014, 44(3): 445-456.
GAO Lihua, HAN Zuozhen, HAN Yu, et al. Controlling of cements and physical property of sandstone by fault as observed in well Xia503 of Huimin sag, Linnan sub-depression[J]. Science China: Earth Sciences, 2014, 44(3): 445-456.
[27]
樊计昌, 刘明军. 确定断裂带内部结构和物性参数的一种方法[J]. 石油地球物理勘探, 2007, 42(2): 164-169.
FAN Jichang, LIU Mingjun. An approach determining internal structure and physical parameters of fractural zone[J]. Oil Geophysical Prospecting, 2007, 42(2): 164-169.
[28]
吴智平, 陈伟, 薛雁, 等. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报, 2010, 84(4): 570-578.
WU Zhiping, CHEN Wei, XUE Yan, et al. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica, 2010, 84(4): 570-578.
[29]
陈伟, 吴智平, 侯峰, 等. 断裂带内部结构特征及其与油气运聚关系[J]. 石油学报, 2010, 31(5): 774-780.
CHEN Wei, WU Zhiping, HOU Feng, et al. Internal structures of fault zones and their relationship with hydrocarbon migration and accumulation[J]. Acta Petrolei Sinica, 2010, 31(5): 774-780. DOI:10.7623/syxb201005012
[30]
高松洋. 测井资料在裂缝识别中的应用:以H地区砂岩储层为例[J]. 石油天然气学报, 2009, 31(2): 272-274.
GAO Songyang. Application of well logging data to fracture distinguishing-as sandstone reservoir in H area[J]. Journal of Oil and Gas Technology, 2009, 31(2): 272-274.
[31]
金强, 周进峰, 王端平, 等. 断层破碎带识别及其在断块油田开发中的应用[J]. 石油学报, 2012, 33(1): 82-89.
JIN Qiang, ZHOU Jinfeng, WANG Duanping, et al. Identification of shattered fault zones and its application in development of fault-block oilfields[J]. Acta Petrolei Sinica, 2012, 33(1): 82-89. DOI:10.7623/syxb201201010
[32]
刘伟, 朱留方, 许东晖, 等. 断裂带结构单元特征及其测井识别方法研究[J]. 测井技术, 2013, 37(5): 495-498.
LIU Wei, ZHU Liufang, XU Donghui, et al. On features and logging recognition method of structure unit in fracture belt[J]. Well Logging Technology, 2013, 37(5): 495-498.
[33]
雍岐东, 付建红, 肖芳淳, 等. 大位移井钻井技术风险评价与分析[J]. 石油学报, 2002, 23(1): 83-84.
YONG Qidong, FU Jianhong, XIAO Fangchun, et al. Risk assessment and analysis for extended reach drilling technique[J]. Acta Petrolei Sinica, 2002, 23(1): 83-84. DOI:10.7623/syxb200201017