全文快速搜索:   高级搜索

  中国石油大学学报(自然科学版)  2018, Vol. 42 Issue (4): 75-81  DOI:10.3969/j.issn.1673-5005.2018.04.009
0

引用本文 [复制中英文]

袁士宝, 赵黎明, 蒋海岩, 等. 基于阶段演化特征的稠油氧化动力学[J]. 中国石油大学学报(自然科学版), 2018, 42(4): 75-81. DOI: 10.3969/j.issn.1673-5005.2018.04.009.
[复制中文]
YUAN Shibao, ZHAO Liming, JIANG Haiyan, et al. Oxidation kinetics of heavy oil based on stage evolution[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(4): 75-81. DOI: 10.3969/j.issn.1673-5005.2018.04.009.
[复制英文]

基金项目

国家自然科学基金项目(51674198);陕西省自然科学基金项目(2016JM5031);陕西省教育厅项目(16JS095)

作者简介

袁士宝(1977-), 男, 副教授, 博士, 研究方向为热采及油藏管理。E-mail:upcysb@126.com

文章历史

收稿日期:2017-09-04
基于阶段演化特征的稠油氧化动力学
袁士宝1,2 , 赵黎明1,2 , 蒋海岩1,2 , 程海清3     
1. 西安石油大学石油工程学院, 陕西西安 710065;
2. 陕西省油气田特种增产技术重点实验室, 陕西西安 710065;
3. 中国石油辽河油田分公司, 辽宁盘锦 124010
摘要: 原油氧化阶段可分为低温氧化前段、低温氧化后段、燃料沉积和高温氧化4个阶段,在对各阶段氧化动力学参数的求取时,些文献中依然应用同反应机制函数进行计算。采用Coats-Redfern积分法对原油氧化过程中动力学参数进行计算,在假设简单反应机制函数情况下分别取反应级数为0、0.5、1进行计算,得到反应级数对氧化动力学参数的影响。通过对已有的30种反应机制函数计算得到不同原油氧化反应阶段逻辑上合理的反应机制方程及动力学参数。结果表明:在低温氧化阶段以相边界反应为主,在高温氧化阶段以三维扩散反应为主,Coats-Redfern积分法适用于计算原油氧化的动力学参数,所得到的曲线线性度较高。
关键词: 稠油    Coats-Redfern积分法    动力学参数    氧化    
Oxidation kinetics of heavy oil based on stage evolution
YUAN Shibao1,2 , ZHAO Liming1,2 , JIANG Haiyan1,2 , CHENG Haiqing3     
1. Petroleum Engineering Institute of Xi'an Shiyou University, Xi'an 710065, China;
2. Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an 710065, China;
3. Liaohe Oilfield Company, PetroChina, Panjin 124010, China
Abstract: Oil oxidation and relevant reactions can be divided into 4 stages during air injection process for in-situ combustion, including the initial stage of low temperature oxidation, the later stage of low temperature oxidation, fuel deposition and high temperature oxidation. To obtain the oxidation kinetics parameters of each stage, a similar oxidation mechanism function has been applied in the literature, in which the reaction characteristics of the 4 reaction stages were not fully considered. In this paper, a Coats-Redfern integral method was used to calculate the oxidation kinetic parameters. Based on a simple reaction mechanism function, the reaction order is assumed as 0, 0.5 and 1, and the influence of the reaction order on the oxidation kinetics parameters was analyzed. A reaction kinetics model and its kinetic parameters were obtained via data processing using existing 30 reaction mechanism functions. It is found that the phase boundary reaction is dominant in the low temperature oxidation stage, and the three-dimensional diffusion reaction is the main stage in the high temperature oxidation stage. The Coats-Redfern integral method is suitable for the calculation of the kinetic parameters for crude oil oxidation with high accuracy.
Keywords: heavy crude oil    Coats-Redfern integral method    kinetic parameters    oil oxidation    

近年来, 注空气提高采收率技术得到了国内外学者的广泛关注[1-2]。注空气驱油的反应机制得到了进一步的明晰[3-4], 矿场试验成功的关键因素也得到普遍认可[5-8]。原油氧化动力学的研究是注空气提高采收率技术的基础理论[9], 学者们在反应动力学参数计算[10-13]和反应阶段[14-17]方面进行了许多探索。但是在利用热重实验分析原油氧化动力学规律时注重反应活化能的求取, 而简单地将原油氧化反应级数n设定为0或1[18-19], 忽视了反应级数对反应机制方程选取的影响, 进而影响动力学参数的确定。笔者基于稠油热重分析(thermal gravity analysis, TGA)实验, 首先通过Coats-Redfern积分法对不同氧化反应阶段的反应机制函数差异性进行分析, 对各氧化反应阶段的反应机制函数进行计算, 深入分析各反应阶段内在机制及动力学参数计算所应注意的问题。

1 原油氧化热重实验

实验采用的油样来自辽河油田, 地面脱气原油黏度为1 362.5 mPa·s, 常温下油样的密度为0.946 4 g/cm3, 胶质沥青质含量为30%~40%, 属于典型的普通稠油。

采用德国耐驰热重分析仪进行实验, 在不同升温速率3、5和7 ℃/min下进行热重(thermal gravity, TG)分析。进而对原始数据进行等间距抽稀。得到TG曲线和失重速率(derivative thermogravimetric analysis, DTG, 即差热重量分析,DTG是TG的二次微分曲线)曲线如图 1所示。

图 1 不同升温速率下油砂热失重结果对比 Fig.1 Comparison of thermal weight loss results of oil sand at different heating rates

在前期研究基础上, 通过TGA实验的失重速率分析可知, 该原油体系氧化反应可以分为4个连续阶段, 这4个阶段主要包括低温(小于180 ℃)氧化反应前段、低温(180~350 ℃)氧化反应后段、燃料沉积段(350~440 ℃)、高温(大于440 ℃)氧化反应阶段[16], 其中燃料沉积阶段既不是高温氧化反应主导也不是低温氧化反应主导, 独立划分为一段。

2 氧化动力学计算方法的选取

目前基于TG实验的氧化动力学参数计算主要有积分法和微分法两种, 积分法可以平滑掉实验数据产生的波动性, 微分法便于研究实验过程的细节变化规律。微分法在采用插值或拟合方法求反应速率的过程中, 由于插值或拟合函数与动力学模型之间的差异, 会引入明显的误差, 计算结果随机性很大, 结果往往不可靠, 需要作图和大量数据处理, 数据处理费时, 而且误差较大[20-21]

由于实验环境本身的影响因素不确定, 会造成实验数据的波动, 采用微分法误差较大, 选择Coats-Redfern积分法对氧化动力学参数进行计算, 以便于平滑实验数据产生的波动性, 提高曲线拟合的可靠性。Coats-Redfern积分法的主要公式为

$ {\rm{ln}}\left( {\frac{{G\left( \alpha \right)}}{{{T^2}}}} \right) = {\rm{ln}}\left( {\frac{{AR}}{{\beta E}}} \right)-\frac{E}{{RT}}. $ (1)

式中, G(a)为积分机制函数; f(a)为微分机制函数; T为温度, K; E为活化能, kJ/mol; R为气体常数, 8.314 J/(mol·K); A为指前因子, min-1; β为升温速率, ℃/min。

设反应机制函数为f(α)=(1-α)n得到常用的Coats-Redfern方程[22]

$ \left\{ \begin{array}{l} {\rm{ln}}\left[{\frac{{1-{{\left( {1-\alpha } \right)}^{1-n}}}}{{{T^2}\left( {1 - n} \right)}}} \right] = {\rm{ln}}\left[{\frac{{AR}}{{\beta E}}\left( {1-\frac{{2RT}}{E}} \right)} \right] - \frac{E}{{RT}}, n \ne 1;\\ {\rm{ln}}\left[{\frac{{-{\rm{ln}}\left( {1-\alpha } \right)}}{{{T^2}}}} \right] = {\rm{ln}}\left[{\frac{{AR}}{{\beta E}}\left( {1-\frac{{2RT}}{E}} \right)} \right] -\frac{E}{{RT}}, n = 1. \end{array} \right. $ (2)

其中

$ \alpha = ({w_0}-{w_{\rm{t}}})({w_0}-{w_{\rm{f}}}). $

式中, α为原料剩余量; w0为初始燃料质量, mg; wt为原料在某时刻质量, mg; wf为反应终了剩余固体质量, mg; n为反应级数(有著作称为经验机制函数幂指数)。

该方法认为, 对于式(2)中一般的反应温区和大部分的活化能E值, $\frac{E}{{RT}} \gg 1$, $1-\frac{{2RT}}{E} \approx 1$, 所以式(2)右端第一项几乎为常数。当反应级数n已知时, 由此式(2)左边项与1/T可以做一条直线, 通过斜率可以求出活化能E[22]。本文中利用该方法在假设反应机制函数为简单机制函数的情况下分析反应级数变化产生的影响, 进一步将已有的反应机制方程代入求取逻辑上合理的反应机制方程, 得到各反应阶段内在机制及活化能E、指前因子A

在通过Coats-Redfern方程计算氧化反应动力学参数后, 需要对计算的正确性进行检验, 本文中采用可在未知反应级数的情况下计算活化能的Flynn-Wall-Ozawa(FWO)方法进行检验, 当Coats-Redfern方法计算得到的活化能E与FWO方法计算得到的活化能E接近时, 认为结果可靠,

$ {\rm{lg}}\beta = {\rm{lg}}\left( {\frac{{AE}}{{RG\left( \alpha \right)}}} \right)-2.315-0.4567\frac{E}{{RT}}. $ (3)
3 计算结果分析 3.1 氧化反应阶段差异性分析

利用Coats-Redfern方程计算反应动力学参数, 选取简单反应机制方程f(α)=(1-α)n, 并假设该简单反应机制方程形式适用于各个氧化反应阶段, 首先假设反应级数n=0, 将原油TG实验数据代入式(2)计算; 绘制Coats-Redfern曲线, 得到Coats-Redfern曲线, 分别取n为1和0.5, 重复以上步骤; 通过各个反应阶段曲线的线性度选取不同的反应级数。

图 2为不同升温速率下的Coats-Redfern曲线。从图 2可以看出, $\ln \left[{\frac{{1-{{\left({1-\alpha } \right)}^{1-n}}}}{{{T^2}\left({1 - n} \right)}}} \right]$与1/T的关系曲线呈明显的阶段性, 并非是一条直线, 这是因为不同温度阶段原油所发生的氧化反应机制不同。基于前期研究[16], 整条曲线分为5个典型阶段, 在原油低温氧化前段、低温氧化后段、高温氧化段的曲线线性度较好, 对于温度大于560 ℃时的曲线线性度较差。文献[16]中认为, 温度大于560 ℃时, 由于热重实验中原油处于静态, 热裂解不充分的原油再次燃烧。

图 2 升温速率3 ℃/min时Coats-Redfern曲线 Fig.2 Coats-Redfern curve at heating rate of 3 ℃/min

图 2可知, 不同级数n下的Coats-Redfern曲线在低温氧化前段没有表现出明显的差异, 不符合氧化反应的动力学规律, 分析认为该阶段主要以挥发、相变等作用为主, 氧化反应并不是主导反应。从低温氧化反应后段开始, 氧化反应开始逐渐增强, 表现为不同反应级数的Coats-Redfern曲线逐渐分离, 出现差异; 当n=0.5时低温反应后段的线性度最好。由于低温氧化反应前段差异性较小, 所以建议在整个低温氧化反应阶段选取反应级数n=0.5进行动力学参数计算。

在高温氧化阶段, Coats-Redfern曲线在高温氧化反应后段不稳定, 该方法不合适于温度大于560 ℃时的动力学参数分析。在高温反应段, 反应级数n=1时曲线线性度为0.96~0.98, 活化能为50~60 kJ/mol。不同升温速率下不同反应级数计算得到的线性度如表 1所示。

表 1 不同氧化反应阶段反应级数计算结果 Table 1 Reaction series at different oxidation stages

在不同氧化反应阶段, 机制函数f(α)=(1-α)n反应级数不同, 说明不同氧化反应阶段的反应机制的差异性, 而简单反应机制函数是否能适用于所有氧化阶段的动力学参数计算就成为首要问题, 须结合阶段反应物理化学过程深入探究其反应机制函数。

3.2 基于反应机制函数的氧化内在机制 3.2.1 低温氧化反应前段动力学参数

通过分析可知Coats-Redfern方法在燃料沉积段计算原油氧化动力学参数并不适用, 所以仅作低温氧化及高温氧化段的计算分析。利用文献[22]中给出的30组反应机制函数进行计算原油氧化动力学参数。将不同的反应机制函数代入式(1), 通过低温氧化反应前段的Coats-Redfern曲线线性度选择确定该反应机制函数下的活化能E和置前因子A, 结果见表 2表 2中已经删除线性拟合度差、计算结果不合理的机制方程, 函数编号与原文献一致。

表 2 低温氧化反应前段不同升温速率下各个机制函数计算结果 Table 2 Results of each mechanism function at different heating rate

在低温反应前段的反应机制函数为函数(17)计算结果如图 3所示。其形式为G(α)=1-(1-α)n, $n = \frac{1}{2}$, 对应的微分形式为$f\left(\alpha \right) = \frac{1}{n}{\left({1-\alpha } \right)^{-\left({n-1} \right)}}$, $n = \frac{1}{2}$, 该函数描述了相边界反应过程; 计算得低温反应前段活化能为12~44 kJ/mol。

图 3 低温氧化反映前段反应机制函数(17)在不同升温速率下计算得到曲线 Fig.3 Curves calculated by reaction mechanism function (17) in different heating rate, front section of low temperature oxidation reaction

原油低温氧化反应前段主要以原油中水分及轻质组分的挥发和加氧反应为主, 此时氧化断键反应并不是主导反应, 仅有少量长链碳氢生成。该反应阶段中原油和水附着于砂粒表面, 主要以相边界反应为主, 与机制函数描述的相边界反应特征一致。反应生成的一些长链化合物可能增加了该阶段原油的氧化反应难度, 导致在低温氧化反应前段活化能较大。

3.2.2 低温氧化反应后段动力学参数

对低温氧化后段进行机制函数选取, 函数(17)的线性拟合度最好, 如图 4所示。利用函数(17)作为反应机制函数, 计算得到升温速率3、5和7 ℃/min下的活化能分别为13.74、16.93和14.44 kJ/mol, 指前因子分别为4.05×107、3.14×107和4.58×107 min-1

图 4 低温氧化反应后段反应机制函数(17)在不同升温速率下计算得到曲线 Fig.4 Curves calculated by reaction mechanism function (17) in different heating rate, post section of low temperature oxidation reaction

在低温反应后段的反应机制函数形式与低温氧化前段一致, 描述了相边界反应。低温反应后段原油中的水分和轻质组分已经挥发完, 该阶段原油氧化反应开始增强氧气与低温反应前段生成的部分长链液态碳氢化合物反应生成了一些短链化合物, 并且有大量的中间产物, 如醛、酮、醇等, 是一个气液相边界反应。低温氧化反应后段活化能变低, 氧化反应容易进行, 而且随着温度的逐渐升高, 反应速率明显加快。

3.2.3 高温氧化反应段动力学参数

对高温氧化反应段实验数据计算并确定机制函数, 计算得到函数(3)的线性拟合度最好, 结果如图 5所示。利用函数(3)作为反应机制函数, 计算得到升温速率为3、5和7 ℃/min下的活化能分别为63.99、61.69和52.08 kJ/mol, 指前因子分别为4.01×105、7.35×105和3.01×106 min-1

图 5 高温氧化反应阶段反应机制函数(3)在不同升温速率下计算得到曲线 Fig.5 Curves calculated by reaction mechanism function (3) in different heating rate, high temperature oxidation reaction stage

在高温反应段的反应机制函数为函数(3), 其形式为$G\left(\alpha \right) = \left({1-\frac{2}{3}\alpha } \right)-{\left({1-\alpha } \right)^{\frac{2}{3}}}$, 对应的微分形式为$f\left(\alpha \right) = \frac{3}{2}{\left[{{{\left({1-\alpha } \right)}^{-1/3}}-1} \right]^{ -1}}$, 动力学机制为三维扩散反应; 计算得高温反应段活化能为53~64 kJ/mol。

在原油高温反应阶段, 燃料沉积阶段沉积的焦炭随温度的升高开始发生燃烧。该阶段反应主要发生在氧气和固体焦炭之间, 反应活化能较大, 生成CO2、H2O等产物, 同时释放出大量的热。根据反应机制函数形式所揭示的机制, 在高温反应阶段, 随着相边界反应基本消失, 氧气与焦炭开始充分接触并发生以三维扩散为主的反应, 使该部位燃烧处于扩散控制工况。影响三维扩散反应的主要因素是空间的氧气浓度梯度, 由其产生的物质传递过程为三维矢量过程。

3.3 计算合理性检验

Flynn-Wall-Ozawa方法避开了反应机制函数的选择而直接求出活化能E值, 可以避免因反应机制函数的假设不同而可能带来的误差, 因此常被用来检验活化能值[22]。为了检验分析结果的可靠性, 利用Flynn-Wall-Ozawa方法计算活化能E与Coats-Redfern方法所得结果进行比较, 检验其计算结果的正确性, 结果见表 3

表 3 活化能计算结果检验 Table 3 Test results of calculation activation energy

表 3分析可知, 在低温反应前段受样品吸收水蒸气和轻组分蒸发的影响,两种方法计算得到的活化能存在很大差距,但在低温反应后段和高温反应阶段计算结果基本一致,说明通过Coats-Redfern方法选取的机制函数是准确的, 计算所得的动力学参数可靠。

3.4 原油黏度对反应机制函数选取的影响

为验证不同黏度对反应机制函数的影响, 对S625(50 ℃黏度53.65 mPa·s)、G3(50 ℃黏度7 250 mPa·s)、SG-38-32(50 ℃黏度38 670 mPa·s)区块3种不同原油黏度进行热重分析实验, 结果如图 6所示。

图 6 不同黏度原油热失重结果对比 Fig.6 Comparison of thermal weight loss results of crude oil with different viscosity

图 6分析可得S625、SG-38-32、G3各区块原油样品, 原油氧化阶段分段如表 4所示。

表 4 不同黏度原油各氧化阶段的温度 Table 4 Temperature range of oxidation stages of different viscosity crude oil

表 4分析可得, 随着原油黏度的增加, 原油低温氧化反应后期的温度范围越来越大, 燃料沉积阶段的温度范围越来越小, 这主要是因为低黏原油所含的轻质组分较多, 重质组分较少, 反应活性较高, 而高黏原油所含重质组分较多, 反应活性低, 所以相对于低黏油, 高黏原油的低温氧化反应阶段较长。

利用Coats-Redfern方程计算原油反应动力学参数, 对文献[22]中提出的30种氧化机制函数进行拟合, 选取不同黏度反应动力学方程,结果如表 5所示。

表 5 不同黏度原油反应机制方程选择 Table 5 Choice of reaction mechanism of crude oil with different viscosity

计算结果显示S625区块的轻质油, 在低温(小于150 ℃)氧化前期阶段, 表现为全段的加氧反应过程, 质量为增加状态, 没有出现导致质量减少的氧化反应, 拟合得没有适合该阶段的氧化机制函数。G3和SG-38-32区块原油黏度相对于S625区块较大, 低温氧化阶段拟合较好, 但是由于原油性质不同, 在低温氧化反应前期所选取的氧化反应机制函数不同, 在高温氧化反应阶段, 由于燃料沉积阶段的产物均为焦炭, 不论轻质油还是重质油在该阶段的反应均以焦炭燃烧为主, 所以该阶段反应机制函数一致。

4 结论

(1) 基于TG热重实验的Coats-Redfern方法适用于计算稠油氧化反应动力学参数。燃料沉积段不属于氧化行为, 应用其他手段分析; 普通稠油的氧化表现为低温氧化反应级数为0.5, 反应活化能12~44 kJ/mol。高温氧化反应级数为1, 活化能为53~64 kJ/mol。不同油品性质可能会出现偏差。

(2) 低温氧化反应阶段以气液相界面反应为主, 随着焦炭的不断生成并沉积在砂粒表面, 到了高温氧化反应阶段就转化为氧气与焦炭的三维扩散反应, 正是由于产物和其性质在不断变化, 最终导致各阶段反应机制不同, 描述其过程的反应机制函数也需要做相应调整, 从而避免在动力学参数计算时出现较大误差。

(3) 在原油氧化反应过程中, 在不同反应阶段所发生的反应各不相同, 不能采用简化手段将所有反应阶段反应级数笼统选取为0或1。应该应用不同的反应机制函数选取线性度最高的函数形式计算反应动力学参数, 并应用FWO方法验证其计算合理性, 进而认识氧化内在机制, 指导注空气提高采收率技术。在原油低温氧化前段反应级数对氧化动力学参数的影响很小, 从低温氧化后段开始影响逐渐显著, 主要表现为除低温氧化前段的其他氧化阶段随着反应级数的升高Coats-Redfern曲线出现平移。

参考文献
[1]
王元基, 何江川, 廖广志, 等. 国内火驱技术发展历程与应用前景[J]. 石油学报, 2012, 33(5): 909-914.
WANG Yuanji, HE Jiangchuan, LIAO Guangzhi, et al. Overview on the development history of combustion drive and its application prospect in China[J]. Acta Petrolei Sinica, 2012, 33(5): 909-914. DOI:10.7623/syxb201205026
[2]
蒲万芬, 袁成东, 金发扬, 等. 轻质油藏高压注空气技术应用前景分析[J]. 科技导报, 2013, 31(17): 72-79.
PU Wanfen, YUAN Chengdong, JIN Fayang, et al. High pressure air injection technique for light oil reservoir:its development history and application prospect[J]. Science & Technology Review, 2013, 31(17): 72-79. DOI:10.3981/j.issn.1000-7857.2013.17.013
[3]
PASCUAL M, CROSTA D, LACENTRE P, et al. Air injection into a mature waterflooded light oil reservoir: laboratory and simulation results for Barrancas Field, Argentina[R]. SPE 94092, 2005.
[4]
顾水华, 何顺利, 田冷, 等. 注空气提高采收率数值模拟研究[J]. 重庆科技学院学报(自然科学版), 2010, 12(5): 82-84.
GU Shuihua, HE Shunli, TIAN Leng, et al. Numerical simulation of air-injection for EOR[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2010, 12(5): 82-84.
[5]
张旭, 刘建仪, 易洋, 等. 注气提高采收率技术的挑战与发展:注空气低温氧化技术[J]. 特种油气藏, 2006, 13(1): 6-9.
ZHANG Xu, LIU Jianyi, YI Yang, et al. The challenge and progress of gas injection EOR:air injection LTO technology[J]. Special Oil and Gas Reservoirs, 2006, 13(1): 6-9.
[6]
于洪敏, 任韶然, 杨宝泉, 等. 低渗油藏注空气低温氧化数值模拟研究[J]. 西南石油大学学报(自然科学版), 2008, 30(6): 117-120.
YU Hongmin, REN Shaoran, YANG Baoquan, et al. Numerical simulation of air injection low temperature oxidation in low permeability reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2008, 30(6): 117-120.
[7]
汪艳, 郭平, 张良华, 等. 轻油注空气提高采收率技术[J]. 断块油气田, 2008, 15(2): 83-85.
WANG Yan, GUO Ping, ZHANG Lianghua, et al. EOR technology of air injection to light oil reservoir[J]. Fault-Block Oil & Gas Field, 2008, 15(2): 83-85.
[8]
王杰祥, 张琪, 李爱山, 等. 注空气驱油室内实验研究[J]. 石油大学学报(自然科学版), 2003, 27(4): 73-75.
WANG Jiexiang, ZHANG Qi, LI Aishan, et al. Laboratory experiment on efficiency of air injiection displacement[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2003, 27(4): 73-75.
[9]
袁成东, 蒲万芬, 郭正, 等. 轻质和重质原油氧化特性及其动力学[J]. 化学工程, 2014(8): 56-59.
YUAN Chengdong, PU Wanfen, GUO Zheng, et al. Oxidation behavior and kinetics of light oil and heavy oil[J]. Chemical Engineering, 2014(8): 56-59.
[10]
MADAOUI K S S, CHASTANG J. An investigation of the feasibility of air injection into a waterflooded light oil reservoir[R]. SPE 29806, 1995.
[11]
VOSSOUGHI S, BARTLETT G, WILLHITE G. Development of a kinetic model for insitu combustion and prediction of the process variables using TGA/DSC techniques[R]. SPE 11073, 1982.
[12]
GONG A, LVES M L A, TEIXEIRA M A G, et al. Contribution of thermal analysis for characterization of asphaltenes from Brazilian crude oil[J]. Journal of thermal analysis and calorimetry, 2001, 64(2): 697-706. DOI:10.1023/A:1011588226768
[13]
FASSIHI M R, BRIGHAM W E, Jr H J R. Reaction kinetics of in-situ combustion:part 2 modeling[J]. Society of Petroleum Engineers Journal, 1984, 24(4): 408-416. DOI:10.2118/9454-PA
[14]
MOORE R G, MEHTA S A, URSENBACH M G. A guide to high pressure air injection(HPAI) based oil recovery[R]. SPE 75207-MS, 2002.
[15]
REN Y, FREITAG N P, MAHINPEY N. A simple kinetic model for coke combustion during an in-situ combustion (ISC) process[J]. Journal of Canadian Petroleum Technology, 2007, 46(4): 47-53.
[16]
蒋海岩, 袁士宝, 李杨, 等. 稠油氧化阶段划分及活化能的确定[J]. 西南石油大学学报(自然科学版), 2016, 38(4): 136-142.
JIANG Haiyan, YUAN Shibao, LI Yang, et al. Stage division and calculation of activition energy of heavy oil oxidation reactions[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(4): 136-142. DOI:10.11885/j.issn.1674-5086.2014.09.09.05
[17]
林伟民. 地层原油及其族组分的氧化反应特性研究[J]. 应用化工, 2011, 40(9): 1581-1584.
LIN Weimin. Oxidation behavior of formation crude oil and its group components[J]. Applied Chemical Industry, 2011, 40(9): 1581-1584.
[18]
王杰祥, 夏金娜, 刘双龙, 等. 轻质原油低温氧化动力学研究[J]. 特种油气藏, 2013, 20(1): 105-107.
WANG Jiexiang, XIA Jinna, LIU Shuanglong, et al. Study on kinetics of light oil under low temperature oxidation[J]. Special Oil and Gas Reservoirs, 2013, 20(1): 105-107.
[19]
唐晓东, 魏宇涛, 李晶晶, 等. 原油注空气氧化反应及其动力学研究进展[J]. 化工进展, 2016, 35(1): 83-90.
TANG Xiaodong, WEI Yutao, LI Jingjing, et al. Advances in oxidation reaction of air injection and its kinetics[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 83-90.
[20]
卢新生, 苟如虎, 张海玲, 等. 确定化学反应级数和速率常数方法的研究及应用[J]. 牡丹江师范学院学报(自然科学版), 2010(1): 29-31.
LU Xinsheng, GOU Ruhu, ZHANG Hailing, et al. Research and application of determination of chemical reaction order and rate constant[J]. Journal of Mudanjiang Normal University(Natural Science Edition), 2010(1): 29-31.
[21]
熊杰明, 张丽萍, 吕九琢. 反应动力学参数的计算方法与计算误差[J]. 计算机与应用化学, 2010, 20(1): 159-160.
XIONG Jieming, ZHANG Liping, LÜ Jiuzhuo. Approaches and their deviations for figuring out the reactive kinetics parameters[J]. Computers and Applied Chemietry, 2010, 20(1): 159-160.
[22]
胡荣祖. 热分析动力学[M]. 北京: 科学出版社, 2008.