全文快速搜索:   高级搜索

  中国石油大学学报(自然科学版)  2018, Vol. 42 Issue (6): 133-138  DOI:10.3969/j.issn.1673-5005.2018.06.015
0

引用本文 [复制中英文]

林日亿, 李晓辰, 梁金国, 等. 低温海水外掠圆管混合对流传热规律实验[J]. 中国石油大学学报(自然科学版), 2018, 42(6): 133-138. DOI: 10.3969/j.issn.1673-5005.2018.06.015.
[复制中文]
LIN Riyi, LI Xiaochen, LIANG Jinguo, et al. Mixed convective heat transfer experiment of hypothermic seawater flow across a pipe[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(6): 133-138. DOI: 10.3969/j.issn.1673-5005.2018.06.015.
[复制英文]

基金项目

国家自然科学基金面上项目(51874333);山东省自然科学基金项目(ZR2017MEE030);国家“十三五”科技重大专项(2016ZX05012-002-005);中央高校基本科研业务费专项(15CX05002A)

作者简介

林日亿(1973-), 男, 教授, 博士, 研究方向为稠油热采理论与技术、能源热化学、油田节能与评价E-mail:linry@upc.edu.cn

文章历史

收稿日期:2017-12-24
低温海水外掠圆管混合对流传热规律实验
林日亿1,2 , 李晓辰3 , 梁金国1 , 徐伟栋1 , 郭彬1     
1. 中国石油大学(华东)储运与建筑工程学院, 山东青岛 266580;
2. 山东省油气储运安全省级重点实验室, 山东青岛 266580;
3. 山东力诺瑞特新能源有限公司,山东济南 250000
摘要: 以自然海水为工质, 对层流范围内低温海水的混合对流传热特性进行实验研究, 研究换热特性与雷诺数、格拉晓夫数和管径的关系, 并与经验公式进行对比; 提出适用于层流范围内低温海水外掠圆管流动与换热系数的经验公式。结果表明, 在实验范围内努赛尔数随着雷诺数和格拉晓夫数增大而增大, 且雷诺数越小, 格拉晓夫数对努赛尔数的影响越明显; 努赛尔数随着立管直径增大逐渐减小, 小管径有利于增强对流传热强度; 自然对流的影响随着雷诺数增加而减小, 随着格拉晓夫数增大而增大; 立管直径越大, 自然对流对于总换热量的影响越强, 且雷诺数越小, 管径变化对自然对流在总换热量中的影响越明显。
关键词: 石油    传热    流动    低温海水    混合对流传热    实验    
Mixed convective heat transfer experiment of hypothermic seawater flow across a pipe
LIN Riyi1,2 , LI Xiaochen3 , LIANG Jinguo1 , XU Weidong1 , GUO Bin1     
1. College of Pipeline & Civil Engineering in China University of Petroleum(East China), Qingdao 266580, China;
2. Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety, Qingdao 266580, China;
3. Shandong Linuo Paradigma Company Limited, Jinan 250000, China
Abstract: The mixed convective heat transfer characteristics of natural seawater in the laminar flow region were studied. And the relationship between the heat transfer characteristics and Reynolds number, Grash of number and diameter was explored. Finally the experimental results were compared with the empirical formulas. The empirical formula on the mixed convective heat transfer coefficient is proposed, which is applicable to the laminar flow of the hypothermic seawater flow across the pipe.The results show that Nu increases with the increase of Re and Gr. With the decrease of Re, the influence of Gr on Nu is more obvious. Nu decreases with the increase of the diameter, the small diameter tube is beneficial to enhance the convective heat transfer intensity. The influence of natural convection decreases with the increase of Re, and increases with the increase of Gr. The influence of natural convection is stronger with the increase of tube diameter, and with the decrease of Re the influence of diameter on the natural convection is more obvious.
Keywords: petroleum    heat conduction    flow    hypothermic seawater    mixed convection heat transfer    experiment    

在海洋深水区的油气资源开发、存储和运输过程中经常需要利用海底输油(气)管道以及海洋平台立管, 处于深海低温环境中的海洋立管在波浪和海流的冲刷下进行强烈的换热[1-3]。但由于立管内部一般会流过高温高压的流体, 在波浪及海流等多种因素的影响下, 管外的流动换热情况比较复杂, 为强制对流和自然对流并存的混合对流传热。对于圆管外流动与换热规律的研究, 国内外许多学者[4-6]大都采用数值模拟, 运用有限元、格子玻尔兹等方法对纳米流体、熔盐、丙烷燃烧产物等各类液体和气体横掠单管进行传热特性研究[7-11], 但大都是单纯强制对流传热[12-13]。对于混合对流传热的研究基本都集中在管内和气体方面, Hamouche等[14]探究了有内热源的水平通道内空气混合对流传热, Touahri等[15]模拟探究了管内蒸馏水混合对流传热。张颖莉、种道彤等[16-17]数值模拟了方管内混合对流传热过程, 龙天渝等[18]k-ε双方程模拟了大宽隙比矩形窄缝通道内单相流体的混合对流传热问题, 发现大宽隙比窄缝通道内的混合对流存在着与圆管内混合对流相似的“中部热岛”现象。Gau、Mare等[19-20]研究了水平通道内的混合对流特性。目前对低温海水横掠单管的混合对流传热研究较少, 由于海水中含有大量盐类, 而深海海水温度较低, 低温条件下海水物理性质与常温下纯水物理性质差别较大, 不能用纯水的物性代替, 且不同海域的海水成分也存在较大差别。笔者以黄海海域自然海水为工质, 对低温环境下管外海水的混合对流传热特性进行实验研究, 探究换热特性的影响因素, 拟合出适用于黄海海域的混合对流传热经验公式。

1 实验系统和方法 1.1 实验系统

基于相似原理指导模化实验并设计实验台, 其示意图如图 1所示, 主要包括高温流体循环系统、低温海水循环系统和温度测量系统3个部分。高温流体循环系统包括空心管、恒温水箱、离心泵、高精度电子流量计、流量调节器、管线等, 空心管由规格为Φ30 mm×1 mm, Φ36 mm×1 mm, Φ50 mm×1 mm, Φ63 mm×1 mm的不锈钢管制成; 低温海水循环系统包括恒温水箱、低温制冷机组、均流孔板、高精度电子流量计、流量调节器、溢流器、排空阀、管线等组件; 温度测量系统由热电偶、数据采集系统、计算机等组成, 热电偶在不锈钢管上的分布如图 2所示。分别在测量段的入口、出口以及S1~S5五个截面上布置热电偶。

图 1 实验系统简图 Fig.1 Diagram of experimental system
图 2 热电偶测温点布置图 Fig.2 Layout of measuring point of thermocouples
1.2 实验方法

向实验水箱内放入除去杂质的海水, 使水位达到设定高度, 通过均流板使水箱中的海水形成均匀流动(为保证沿立管高度方向冷流体流速均匀, 实验前通过Fluent数值模拟软件研究了均流板布置方式对流场的影响, 得到了一组均匀流场的均流板布置参数(布置位置、层数、孔径等), 以此设计均流板, 进行实验。低温水浴中的海水由离心泵泵入水箱中, 中间采用流量调节器对水箱中的海水进行调节, 由高精度电子流量计测量进、出口流量, 保证每个入口和出口的流量相同, 同时保持水箱内液面恒定在1 m的位置, 最后流出的海水进入低温水浴中降温, 进行再次循环。水位及温度稳定后, 记录立管与水箱内的流量、进出口温度、每个截面的温度等参数。实验结束后, 打开排空阀, 将水箱内的海水排空, 并将恒温水浴、立管和泵内的海水排尽, 避免腐蚀设备。

2 实验结果与分析 2.1 数据处理方法

立管内流体为高温海水, 且保持入口温度和体积流量恒定, 圆管外为低温海水, 其温度通过立管外壁附着热电偶测得, 同时结合温度计测量作为对比; 通过计算立管和管外低温流体的换热量Φ, 得出对流传热系数。在水箱外部敷设了一层复合硅酸铝保温材料, 边界条件看作绝热, 因此管内流体的散热量在理论上与管外流体的吸热量相等。

管内流体散热量的计算公式[21]

$ \mathit{\Phi } = \rho {c_p}{q_{\rm{v}}}(T{'_{{\rm{f1}}}} - T'{'_{{\rm{f1}}}}{\rm{)}}. $ (1)

式中, Φ为立管内流体散热量, W; ρ为流体密度, kg·m-3; cp为流体的比定压热容, J·(kg·K)-1; qv为管内高温海水的体积流量, m3/s; T'f1Tf1分别为立管内高温海水的进、出口温度, K。

通过测得的每个截面上热电偶温度计算出截面的平均温度和管外冷流体的平均温度TwTf2, 则立管与管外海水的换热量Φi[21]

$ {\mathit{\Phi }_i} = {h_i}A({{\bar T}_{\rm{w}}} - {{\bar T}_{{\rm{f2}}}}). $ (2)

式中, hi为各界面处对流传热系数,W/(m·K); Tw为立管管壁平均温度, K; Tf2为管外来流海水的平均温度, K。

根据式(1)和(2)可求出各截面处的对流传热系数, 进而求得平均对流传热系数。

计算得到努赛尔数Nu

$ Nu = \bar h{D_{\rm{e}}}/{\lambda _{\rm{f}}}. $ (3)

式中, De为当量直径, m; λf为管外来流海水的导热系数, W·(m·K)-1

2.2 换热特性与雷诺数Re和格拉晓夫数Gr关系

选取4种不同的进口流体温度20、40、60和80 ℃, 计算得到4组Gr, 选取不同的立管进口流体速度, 计算得到Re; 研究不同ReGrNu的影响, 如图 3所示。

图 3 Gr对流动换热特性影响 Fig.3 Effect of Gr on heat transfer

深海海水的温度在4~10 ℃, 实验时保持水箱内水温恒定在7 ℃。图 3为30 mm管径下换热特性与ReGr的关系, 由图 3中可以看出, 当Gr不变时, Nu随着Re增加而增大; 当Re不变时, Nu随着Gr的增加明显增大, 并且Re越小, GrNu的影响越明显, 随着Re的增大, GrNu的影响减弱。

Gr/Re2可以直观地反映出自然对流和强迫对流的相对强弱, Gr/Re2的值在0.1~10时, 是自然对流与强迫对流并存的混合对流, 并且Gr/Re2值越大自然对流的影响越强。图 4Gr/Re2ReGr的变化关系。从图 4中可以看出, Gr不变时, Gr/Re2值随Re增大而减小; Re不变时, Gr/Re2值随着Gr增大而明显增大, 且在低Re时, Gr/Re2值变化很大; 高Re时, Gr/Re2值变化很小。由此可见, 自然对流随着Re增加而减弱, 随着Gr增加而增强。

图 4 Gr/Re2ReGr的变化 Fig.4 Variation of Gr/Re2 with Re and Gr
2.3 换热特性与管径关系

图 5为不同管径下换热特性随雷诺数的变化规律。从图 5中可以得出, Nu随着Re增大而增大, 随着立管直径增大逐渐减小, 结合式(3)说明管径增大, 对流传热系数h减小, 即管径增大会削弱管外流体换热, 小管径有利于增强对流传热强度。

图 5 管径对流动换热特性影响 Fig.5 Effect of diameter on heat transfer

图 6为不同管径下Gr/Re2随雷诺数的变化规律。由图 6中可以看出, Gr/Re2值随着Re增大而减小, 立管直径越大, Gr/Re2值越大, 自然对流对于总换热量的影响越强, 且Re越小, 管径变化对自然对流在总换热量中的影响越明显。

图 6 管径对Gr/Re2影响 Fig.6 Effect of diameter on Gr/Re2
2.4 实验关联式拟合

图 7为实验值与经验公式对比结果。强迫对流采用文献[22]中经验公式计算, 自然对流采用文献[23]中公式计算。由图 7中可知, 实验值和经验公式的Nu均随着Re增大而增大, 实验值介于单纯强迫对流值和自然对流与强制对流值加和的中间。随着Re增大, 实验值与单纯强迫对流经验公式的值逐渐靠近, 因为随着Re增大, 强迫对流在增强, 而自然对流在逐渐减弱, 强迫对流对于总换热量的影响在逐渐增强。

图 7 实验与经验公式计算结果对比 Fig.7 Comparison between experimental data and empirical results

利用量纲分析法[21], 对于此单项对流传热, 其努赛尔数可以表示为

$ Nu=f(Re, Pr, Gr). $ (4)

经Matlab多元线性回归方程拟合后得到的实验关联式为

$ Nu = 126.811R{e^{0.1318}}P{r^{ - 0.6496}}G{r^{ - 0.0432}}. $ (5)

拟合关联式的适用范围为:490 < Re≤3 900, 2.8×105 < Gr < 8.2×107, 4.17 < Pr≤8.5。图 89为各参数下NuReGr的拟合关系曲线。

图 8 NuRe拟合关系曲线 Fig.8 Correlation between Nu and Re
图 9 NuGr拟合关系曲线 Fig.9 Correlation between Nu and Gr

图 89可以看出, 拟合的关联式与实验数据点的吻合度较高, 关联式和数据点的偏差均在-5.14%~6.17%。

3 结论

(1) 在实验范围内Nu随着ReGr增大而增大, 且Re越小, GrNu的影响越明显, 随着Re增大, GrNu的影响减弱; Nu随着立管直径增大逐渐减小, 小管径有利于增强对流传热强度。

(2) 综合考虑自然对流和强制对流的影响, 自然对流的影响随着Re增加而减小, 随着Gr增大而增大; 立管直径越大, 自然对流对于总换热量的影响越强, 且Re越小, 管径变化对自然对流在总换热量中的影响越明显。

(3) 拟合得到层流混合对流传热的实验关联式, 与实验数据吻合较好, 偏差在-5.14%~6.17%。

参考文献
[1]
娄敏, 董文乙, 郭海燕. 波浪作用下海洋立管实验研究及ANSYS数值模拟[J]. 中国造船, 2010, 51(1): 73-77.
LOU Min, DONG Wenyi, GUO Haiyan. Experimental and ANSYS numerical simulation of marine riser under wave load[J]. Shipbuilding of China, 2010, 51(1): 73-77. DOI:10.3969/j.issn.1000-4882.2010.01.009
[2]
林日亿, 齐尚超, 沈文丽, 等. SAGD循环预热水平段注汽参数规律[J]. 中国石油大学学报(自然科学版), 2018, 40(1): 134-141.
LIN Riyi, QI Shangchao, SHEN Wenli, et al. Study on parameters of steam injection in SAGD circulating preheating section[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 40(1): 134-141. DOI:10.3969/j.issn.1673-5005.2018.01.017
[3]
张丛丽.横管绕流及其冲刷规律的实验研究[D].上海: 上海交通大学, 2009.
ZHANG Congli. The experimental investigation on the flow field and the scouring around a pipeline[D].Shanghai: Shanghai Jiao Tong University, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D068248
[4]
LO D C, DONG T S. An embedding finite element analysis of heat transfer on the surface of circular cylinders in flow[J]. International Journal of Heat and Fluid Flow, 2012, 55(23): 6916-6926.
[5]
王琳, 李玉星, 刘昶, 等. 考虑弹性基础的气液两相流海洋立管耦合振动分析[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 134-139.
WANG Lin, LI Yuxing, LIU Chang, et al. Fluid structure interaction analysis of gas-liquid two-phase flow in marine riser system on an elastic foundation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(1): 134-139. DOI:10.3969/j.issn.1673-5005.2016.01.019
[6]
GRUCELSKI A, POZORSKI J. Lattice Boltzmann simulations of heat transfer in flow past a cylinder and in simple porous media[J]. International Journal of Heat and Mass Transfer, 2015, 86: 139-148. DOI:10.1016/j.ijheatmasstransfer.2015.02.046
[7]
MOHAMMAD S V, ARIYAN Z G. Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing Nanofluid[J]. International Communications in Heat and Mass Transfer, 2011, 38(9): 1296-1304. DOI:10.1016/j.icheatmasstransfer.2011.06.007
[8]
MITESH V, SAGAR S, PANARA P. Heat transfer characteristics of low Reynolds number flow of Nanofluid around a heated circular cylinder[J]. Procedia Technology, 2014, 14(14): 348-356.
[9]
SANDIP S, SUVANKAR G, BISWAS G. Mixed convective heat transfer of Nanofluids past a circular cylinder in cross flow in unsteady regime[J]. International Journal of Heat and Mass Transfer, 2012, 55(17): 4783-4799.
[10]
SHIQUAN H, JIANFENG L, JING Ding. Convective heat transfer of molten salt outside the tube bundle of heat exchanger[J]. Experimental Thermal and Fluid Science, 2014, 59: 9-14. DOI:10.1016/j.expthermflusci.2014.07.008
[11]
KAMINSKI D A, FU X D, JENSEN M K. Numerical and experimental analysis of combined convective and radiative heat transfer in laminar flow over a circular cylinder[J]. International Journal of Heat and Mass Transfer, 1995, 38(17): 3161-3169. DOI:10.1016/0017-9310(95)00061-D
[12]
魏英杰, 何钟怡. 气体横掠单管强制对流传热的大涡模拟[J]. 热能动力工程, 2003, 18(3): 259-262.
WEI Yingjie, HE Zhongyi. Large eddy simulation of forced convection heat exchange by gases sweeping across a single tube[J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(3): 259-262. DOI:10.3969/j.issn.1001-2060.2003.03.011
[13]
高胜利.不同边界条件下管外对流传热性能的实验研究[D].重庆: 重庆大学, 2006.
GAO Shengli. Experimental study of connective heat transfer characteristics for outside tube at different boundary condition[D].Chongqing: Chongqing University, 2006. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1017379
[14]
HAMOUCHE A, BESSAÏH R. Mixed convection air cooling of protruding heat sources mounted in a horizontal channel[J]. International Communications in Heat and Mass Transfer, 2009, 36(8): 841-849. DOI:10.1016/j.icheatmasstransfer.2009.04.009
[15]
TOUAHRI S, BOUFENDI T. Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect[J]. Thermal Science, 2012, 16(1): 53-67. DOI:10.2298/TSCI101120080T
[16]
张颖莉, 种道彤, 刘继平, 等. 方管内混合对流与管壁导热耦合换热的数值模拟[J]. 西安交通大学学报, 2012, 46(5): 24-30.
ZHANG Yingli, ZHONG Daotong, LIU Jiping, et al. Numerical investigation on conjugated heat transfer of conduction in wall and mixed convection[J]. Journal of Xi'an Jiaotong University, 2012, 46(5): 24-30.
[17]
种道彤, 刘继平, 张清甫, 等. 水平方管层流混合对流的三维数值模拟[J]. 工程热物理学报, 2009(1): 141-143.
ZHONG Daotong, LIU Jiping, ZHANG Qingfu, et al. Numerical simulations of 3d-flow for Laminar mixed convection in horizontal rectangular tubes[J]. Journal of Engineering Thermophysics, 2009(1): 141-143. DOI:10.3321/j.issn:0253-231X.2009.01.039
[18]
龙天渝, 何川, 潘良明, 等. 大宽隙比竖直矩形窄缝通道内混合对流传热的数值研究[J]. 重庆建筑大学学报, 1999(6): 12-15.
LONG Tianyu, HE Chuan, PAN Liangming, et al. Numerical simulation on the mixed convection in a vertical rectangular narrow channel[J]. Journal of Chongqing Jianzhu University, 1999(6): 12-15.
[19]
GAU C, JENG Y C, LIU C G. An experimental study on mixed convection in a horizontal rectangular channel heated from a side[J]. Transactions-American Society of Mechanical Engineers Journal of Heat Transfer, 2000, 122(4): 701-707.
[20]
MARE T, GALANIS N, VOICU I, et al. Experimental analysis of mixed convection in inclined tubes[J]. Applied Thermal Engineering, 2006, 26(14): 1677-1683.
[21]
杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2010.
[22]
CHURCHILL S W, BERNSTEIN M. A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow[J]. ASME, Transactions Journal of Heat Transfer, 1977, 99(2): 300-306. DOI:10.1115/1.3450685
[23]
杨世铭. 细长竖圆柱外及竖圆管内的自然对流传热[J]. 西安交通大学学报, 1980, 14(3): 115-129.
YANG Shiming. Free convections of heat outside slender vertical cylinders and inside vertical tubes[J]. Journal of Xi'an Jiaotong University, 1980, 14(3): 115-129.