文章编号:1673-5005(2008)04-0136-06

单分子烷基季铵盐改性蒙脱石性能分析

刘宏生^{1,2},高芒来¹,杨 莉^{1,2},韩翻珍¹

(1. 中国石油大学 化学科学与工程学院,北京 102249; 2. 大庆油田有限责任公司 勘探开发研究院,黑龙江 大庆 163712)

摘要:以四甲基溴化铵(TMAB)、四乙基溴化铵((Et)₄NB)、二价季铵盐(MD 膜驱剂)、十二烷基三甲基溴化铵 (DTAB)和十六烷基三甲基溴化铵(CTAB)为改性剂,考察改性蒙脱石的膨胀性、含水量和吸附量,并对改性蒙脱石 用 X 射线衍射(XRD)、傅里叶红外(FT-IR)和热重(TG)分析表征。结果表明:TMAB,(Et)₄NB 和 MD 膜驱剂主要以 单分子平躺在蒙脱石晶层间,使层间距降低,有较好的防膨作用;DTAB 和 CTAB 可以在蒙脱石晶层间以单层平卧、 双层平卧、假三层及倾斜等多种方式排列,使层间距增加;在相同浓度时,蒙脱石对(Et)₄NB 或 MD 膜驱剂的吸附量 低于对 TMAB,DTAB 和 CTAB 的吸附量。

关键词:改性蒙脱石;季铵盐; MD 膜驱剂;膨胀性 中图分类号:TO 423.12 文献标识码: A

Property analysis of organic modified montmorillonite by single molecule alkyl quaternary ammonium salts

LIU Hong-sheng^{1,2}, GAO Mang-lai¹, YANG Li^{1,2}, HAN Fan-zhen¹

(1. Faculty of Chemistry and Chemical Engineering in China University of Petroleum, Beijing 102249, China;

2. Exploration and Development Research Institute of Daqing Oilfield Company Limited, Daqing 163712, Heilongjiang Province, China)

Abstract: X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and thermogravimetry (TG) analysis methods were applied to investigate the properties of organic modified montmorillonite by tetramethyl ammonium bromide (TMAB), tetraethyl ammonium bromide ($(Et)_4NB$), molecular deposition filming flooding agent (MDFFA), dodecyl trimethyl ammonium bromide (DTAB) and hexadecyl trimethyl ammonium bromide (CTAB). The results show that TMAB, (Et)_4NB and MDFFA have superior anti-swelling effect on montmorillonite, DTAB and CTAB make montmorillonite swelling. At the same concentration, the quantity of $(Et)_4NB$ or MDFFA which was adsorbed on montmorillonite is less than that of TMAB, DTAB or CTAB.

Key words: modified montmorillonite; quaternary ammonium salt; molecular deposition filming flooding agent(MDFFA); distensibility

季铵盐化合物在粘土矿物上的吸附可改变粘土 的许多性质,如抑制粘土膨胀、颗粒絮凝和聚集等。 季铵盐在粘土上的作用机理一般认为是阳离子交换 和分子吸附。季铵盐改性粘土在钻井、固井、提高低 渗油层渗透性等领域有广阔的应用前景。季铵盐类 化合物改性粘土的研究主要包括单价的长链季铵盐 表面活性剂^[1-2]和二价的阳离子双子表面活性 剂^[3]。分子沉积(MD)膜驱油技术是一项新的提高 采收率技术^[4],MD 膜驱剂是一种不具备表面活性 的短链二价季铵盐。笔者用 X 射线衍射(XRD)、傅 里叶红外光谱(FT-IR)和热重(TG)表征方法,研究 四甲基溴化铵(TMAB)、四乙基溴化铵((Et)₄NB)、 MD 膜驱剂、十二烷基三甲基溴化铵(DTAB)和十六 烷基三甲基溴化铵(CTAB)对蒙脱石膨胀性、含水

收稿日期:2008-02-20

基金项目:北京市教委共建计划项目(XK114140479)

作者简介:刘宏生(1979-),男(汉族),辽宁沈阳人,硕士,主要从事油田化学研究。

量和吸附量的影响。

1 实 验

1.1 药品与仪器

实验药品: MD 膜驱剂(德国 DR. THEODOR SCHUCHARDT)、四甲基溴化铵、四乙基溴化铵、十 二烷基三甲基溴化铵、十六烷基三甲基溴化铵,以上 均为分析纯; 膨润土,其中,蒙脱石含量为90% ~ 98%,化学组分为50.90% SiO + 18.36% Al₂O₃ + 1.03% Fe₂O₃ + 3.97% CaO + 4.14% MgO + 1.18% Na₂O + 2.15% P₂O₅ + 0.72% K₂O, 阳离子交换容量 (CEC)为0.88 mmol/g,上海试四赫维化工有限公 司生产,粒度为0.149 mm(110 ℃下烘干6 h)。

实验仪器: 岛津 XRD6000 型 X 射线粉末衍射仪 (Cu 靶, 波长为 0.154 06 nm, 管压 40.0 kV, 管流 30.0 mA, 扫描范围 20 为 3°~ 8°, 扫描速度 1°/ min), Magna 560 ESP 傅里叶变换红外光谱仪(分辨 率4 cm⁻¹, 扫描范围 4000 ~ 400 cm⁻¹, 扫描次数 32 次), NETZSCH STA 409 PC/PG 热重分析仪(载气 (氦)流速 30 mL/min), HZS-H 型恒温水浴振荡器 和 LD4-2A 离心机。

1.2 实验方法

1.2.1 XRD 测定

分别称取1g蒙脱石加人100 mL不同浓度的 TMAB,(Et)₄NB,MD 膜驱剂,DTAB 和 CTAB 溶液 中,放在恒温水浴中,摇动使其充分分散在溶液中, 室温下静置48 h 以上,离心分离,倾掉上层清液,取 湿样进行 XRD 测定。

1.2.2 FT-IR 测定

取经改性的蒙脱石,40 ℃干燥 48 h,然后充分 研磨,测试 IR 光谱。

1.2.3 TG测定

称经改性的蒙脱石干样约 15 mg 加入到铂坩锅 中,以 10 ℃/min 速率升温,温度为 30 ~ 800 ℃,获 得蒙脱石的热重曲线。

2 结果分析

2.1 烷基季铵盐改性蒙脱石的 XRD 分析

2.1.1 烷基季铵盐对蒙脱石 XRD 衍射峰的影响

XRD 测量粘土的衍射角在 2θ < 10°的峰是 d₀₀₁ 面的衍射峰,体现层间距的大小。从衍射峰的位置 和强弱可以表征出粘土层间距和季铵盐的插入效 果。不同浓度 MD 膜驱剂改性蒙脱石的湿样 XRD 图如图 1 所示。由图 1 可知,未改性蒙脱石湿样的 XRD 出现两个衍射峰,其中在左边小角度处的峰表 现为完全膨胀状态,在右边较高角度处的峰表现为 部分膨胀状态^[5]。MD 膜驱剂改性后蒙脱石湿样的 XRD 双峰重叠为一单峰,即改性蒙脱石完全膨胀状 态消失,只表现部分膨胀状态。随 MD 膜驱剂浓度 的增加,改性蒙脱石的部分膨胀峰的峰强逐渐增强; 当 MD 膜驱剂浓度超过4.0 mmol/L 后,蒙脱石的峰 强基本稳定。粘土层间膨胀是交换阳离子从粘土单 元层表面向层中心迁移并完全水化的过程^[6],而 MD 膜驱剂会优选吸附在电荷密度高的点上,因此 完全膨胀层(代表电荷密度高的点)强度迅速消失。

图 1 不同浓度 MD 膜驱剂改性蒙脱石的湿样 XRD 图

不同烷基季铵盐改性蒙脱石的湿样 XRD 图如 图 2 所示。由图 2 可知,TMAB 或(Et)₄NB 改性蒙 脱石的湿样 XRD 峰形与 MD 膜驱剂相似。随 TMAB 或(Et)₄NB 浓度增加,蒙脱石的部分膨胀峰 的峰强增强。在相同短链季铵盐加入量下,TMAB 改性蒙脱石的部分膨胀峰的峰强弱于(Et)₄NB 和 MD 膜驱剂的。DTAB 或 CTAB 改性蒙脱石的湿样 XRD 峰形与短链的差别很大,改性的蒙脱石表现为 完全膨胀和部分膨胀。在 1.0 mmol/L DTAB 或 CTAB 加入量下,蒙脱石的部分膨胀峰的峰强增强。 在 12.0 mmol/L 加入量下,蒙脱石的完全膨胀峰的 峰强增强,部分膨胀峰的峰强明显减弱。

图 2 不同烷基季铵盐改性蒙脱石的湿样 XRD 图

2.1.2 烷基季铵盐对蒙脱石层间距的影响

根据 Bragg 方程 $2d_{001} \sin \theta = \lambda$ (其中, d_{001} 为硅酸 盐片层 001 面的间距, θ 为半衍射角, λ 为入射 X 射 线波长(0.154 nm)),可以算出硅酸盐片层 001 面 的间距。由每个晶片的厚度为 0.96 nm,可得两个 晶片实际层间距 Δd 为

 $\Delta d = d_{001} - 0.96.$

通过计算得烷基季铵盐改性蒙脱石的层间距如 表1.2 所示。

表1	不同浓度	MD	膜驱剂改性蒙脱石的层间距
----	------	----	--------------

MD 膜驱剂浓度	层间距	有效层间距
$c/(\text{mmol} \cdot L^{-1})$	d ₀₀₁ ∕nm	<u>Δd/nm</u>
0.0	1.996	1.036
0. 6	1.604	0. 644
1.0	1. 491	0. 531
2.0	1. 462	0. 502
4.0	1. 457	0. 497
8.0	1. 453	0. 493
12.0	1.460	0. 500
24. 0	1. 446	0. 486

由表1可知,在 MD 浓度低于 2.0 mmol/L 时, 蒙脱石的层间距随 MD 膜驱剂浓度的增加而减小;

MD 浓度超过 2.0 mmol/L 时,蒙脱石的层间距变化 很小,为 0.5 nm 左右。结合 MD 膜驱剂改性蒙脱石 的 XRD 峰形和层间距,可知 MD 膜驱剂在 4.0 mmol/L 加入量时,蒙脱石的 XRD 峰强达最大、层间 距最小。由表 2 可知, TMAB 或(Et)₄NB 使蒙脱石 的层间距降低。经 DTAB 和 CTAB 改性后蒙脱石的 层间距大于短链季铵盐改性的,表现为膨胀。

用 Gaussian03 软件对不同季铵盐分子优化计算 得出其分子排布的笛卡儿坐标,通过投影的方法,得 到烷基季铵盐阳离子投影图如3 所示。

表 2 不同烷基季铵盐改性蒙脱石的层间距

季铵盐 类型	改性剂加 入量 c/ (mmol·L ⁻¹)	完全膨胀 层间距 d ₀₀₁ /nm	完全膨胀 有效层间 距 Δd/nm	部分膨胀 层间距 d _{001,p} /nm	部分膨胀 有效层间 距 Δd _p /nm
ТМАВ	1.0	2.051	1.091	1.460	0. 500
	12. 0	_	-	1.456	0. 496
(Et) ₄ NB	1.0		_	1.541	0. 581
	12. 0	_		1. 470	0. 510
DTAB	1.0	1.839	0. 879	1.401	0. 441
	12. 0	2.306	1.346		-
СТАВ	1.0	2.010	1.050	1. 428	0. 468
	12.0	2. 201	1.241		

图 3 烷基季铵盐分子的投影图

由图 3 及氢原子共价半径(0.037 nm),根据分子 结构的对称性可计算出不同季铵盐的截面距离和分 子长度。MD 膜驱剂、DTAB 和 CTAB 分子的截面最 大距离为 0.49 nm,截面最小距离为 0.42 nm^[7]。MD 膜驱剂分子长为 1.37 nm^[7],DTAB 分子长为 1.91 nm,CTAB 分子长为 2.42 nm。TMAB 分子的截面最 小距离为 0.38 nm,截面最大距离为 0.50 nm。 (Et)₄NB 分子的截面最小距离为 0.38 nm,截面最大 距离为 0.74 nm。这与文献 [8] 报道略有不同。

Jordan^[9]研究表明,不同结构的铵离子在不同 的覆盖度下,其蒙脱石层状结构不尽相同,基本单元 结构的层间可以吸附单分子或双分子的有机氮离 子。短链烷基季铵盐 TMAB 和(Et)₄NB 在 1.0, 12.0 mmol/L 加入量下,蒙脱石的层间距在 0.50 nm ~ 0.58 nm,结合季铵盐分子的截面距离,表明短链 季铵盐分子主要是以单分子平躺在蒙脱石晶层之 间。

当季铵盐在蒙脱石晶层间以单层倾斜排列时, 由公式^[10] $d_{001} = Lsin \alpha + 0.96(其中, \alpha 为季铵盐分$ 子与上下层面的夹角, L 为季铵盐分子链长)可算出季铵盐的倾斜角度。MD 膜驱剂在 0.6 mmol/L 加入量下,蒙脱石层间距为 0.644 nm, MD 膜驱剂分子长 1.37 nm, 此条件下算出 MD 膜驱剂在蒙脱石晶层之间以 28.0°倾斜排列;当加入量大于 1.0 mmol/L 时, MD 膜驱剂主要以单分子平躺在蒙脱石晶层之间。

长链烷基季铵盐在 1.0, 12.0 mmol/L 加入量 下,蒙脱石层间距变化较大。在1.0 mmol/L 加入量 下,DTAB 改性的蒙脱石在 20 为 6.3°处,层间距为 0.441 nm, DTAB 只能在蒙脱石晶层之间以平卧单 层排列;在 2θ 为 4.8°处,蒙脱石的层间距为 0.879 nm, DTAB 可以呈紧密堆积的平卧双层排列, DTAB 的阳离子端凸出的甲基部分可能楔入到另一层有机 离子之间的孔隙中或蒙脱石硅氧层面上的六方孔洞 中去[11],使烷基链形成紧密接触的双层平卧排列。. CTAB 改性的蒙脱石在 2θ 为 6.2° 处, 层间距为 0.468 nm,与 DTAB 相似,CTAB 只能在蒙脱石晶层 之间以平卧单层排列;在20为4.3°处,蒙脱石的层 间距为1.050 nm, CTAB 可以假三层排列在蒙脱石 晶层之间,或以25.7°倾斜方式排列在蒙脱石晶层 之间。长链季铵盐 DTAB 和 CTAB 在 12.0 mmol/L 加人量下,蒙脱石的层间距分别为 1.346 nm 和 1.241 nm, DTAB, CTAB 都以倾斜方式排列在蒙脱 石晶层之间, 倾斜角度分别为 44.9° 和 30.8°。总 之,长镕季铵盐在低浓度时,可以以多种方式排列在 蒙脱石晶层之间,而在高浓度下,主要以倾斜方式排 列在蒙脱石晶层之间。

2.2 烷基季铵盐改性蒙脱石的 FT-IR 分析

2.2.1 烷基季铵盐对蒙脱石 FT-IR 谱图的影响

蒙脱石经不同烷基季铵盐改性后的 FT-IR 谱图 如图 4.5 所示。

由图 4,5 可知,经不同烷基季铵盐改性的蒙脱 石,一些特征峰并没有发生变化。这表明蒙脱石层 间阳离子被季铵盐阳离子置换后,层状硅酸盐的骨 架没有变化。由于季铵盐阳离子的对称性强,其 IR 谱图的吸收峰一般比较简单,再加上季铵盐的大部 分吸收峰被蒙脱石的强而宽的峰所掩盖,因此几种 季铵盐改性蒙脱石的 FT-IR 谱图差别很小。

图 4 不同浓度 MD 膜驱剂改性蒙脱石的 FT-IR 谱图

由图4,5 可知,经不同烷基季铵盐改性后的蒙 脱石的 FT-IR 谱图在指纹区出现了 C-H 弯曲振动 的1488 cm⁻¹特征峰,在2920,2851 cm⁻¹附近出现 了亚甲基对称和不对称伸缩振动的特征峰[12],而未 经讨改性的蒙脱石则没有出现这些特征峰,这表明 季铵盐进入蒙脱石晶层之间。蒙脱石经过 MD 膜驱 剂处理后,2920,2851 cm⁻¹附近出现的吸收峰较 弱,且随 MD 膜驱剂加入量的增加,两吸收峰逐渐增 强。由于 TMAB 分子不存在亚甲基, TMAB 处理的 蒙脱石在 2 920, 2 851 cm⁻¹ 附近没有出现吸收峰。 (Et)₄NB 处理的蒙脱石在 2 920, 2 851 cm⁻¹ 附近出 现较弱的吸收峰。经长链季铵盐 DTAB 或 CTAB 改 性后的蒙脱石,在2920,2851 cm⁻¹附近有较强的吸 收峰,且随 DTAB 或 CTAB 浓度增加,峰的强度有明 显增加。这可能由于 MD 膜驱剂和(Et)₄NB 单个分 子包含的亚甲基量明显低于 DTAB 和 CTAB, 且长 链季铵盐的吸附量较大的缘故。

2.2.2 蒙脱石层间含水量分析

蒙脱石层间含水量是反映粘土水化的一个重要 指标。水分子与蒙脱石层表面的硅氧四面体通过氢 键结合,因此Si—O(1160~940 cm⁻¹)伸缩振动峰 与层间水的H—O—H(1660 cm⁻¹)弯曲振动峰有一 定的关系^[13]。Yan 等^[14]以Si—O伸缩振动峰为参 比,测定了不同蒙脱石中水的质量与蒙脱石质量之 比(m_*/m_c)条件下的H—O—H弯曲振动峰,随 m_*/m_c 增大,H—O—H 峰的强度增大。利用峰面积法 测定了H—O—H 弯曲振动峰和Si—O伸缩振动峰 的峰面积,计算峰面积比($A_{H=O=H}/A_{Si=O}$),以蒙脱石 空白样为基准,可得蒙脱石的相对含水量。不同烷 基季铵盐在不同浓度下改性蒙脱石的层间相对含水 量列于表3和表4中。

	表 3	不同浓度 MD	膜驱剂改性蒙脱石的层间	含水量
--	-----	---------	-------------	-----

, MD 膜躯剂浓度 c/(mmol・L ⁻¹)	A _{H-0-H} /A _{Si-0}	相对含水量 w/%
0. 0	0. 059	100.00
0.6	0. 039	65.61
1.0	0.026	43. 12
2.0	0. 029	48.43
4.0	0.024	40. 53
8.0	0.025	43.03
12.0	0.016	26.30
24.0	0.027	45.09

由表3可知,蒙脱石经过 MD 膜驱剂改性后,峰 面积比 A_{H-O-H}/A_{si-0} 明显减小,层间含水量降低。 低于 1.0 mmol/L 加入量时,蒙脱石层间含水量随 MD 膜驱剂加入量的增加而降低;当 MD 膜驱剂高 于 1.0 mmol/L 时,蒙脱石层间含水量在 0.024 ~ 0.029(除 12.0 mmol/L 外),相对含水量为 40 % ~ 48 %,表明蒙脱石层间含水量明显减少。由表 4 可 知,蒙脱石经过不同季铵盐改性后,峰面积比 A_{H-O-H}/A_{Si-O} 都有所减小,表明蒙脱石层间含水量 减少。季铵盐浓度增加蒙脱石层间含水量明显降 低。在 12.0 mmol/L 加入量时,DTAB 和 CTAB 使蒙 脱石层间含水量小于 TMAB 和(Et)₄NB,但都大于 MD 膜驱剂改性蒙脱石的层间含水量,这可能是由 于 DTAB 和 CTAB 都含有疏水的长链烷基。

表 4 不同烷基季铵盐改性蒙脱石的层间含水量

季铵盐类型	改性剂加入量 c/(mmol・L ⁻¹)	А _{н0-н} /А _{si0}	相对含水量 w/%
	—	0.059	100.00
TMAD	1.0	0.037	62. 38
IMAB	12.0	0.030	50. 26
(E) NR	1.0	0.039	65.82
(Et) ₄ ND	12.0	0. 031	51.84
DTAD	1.0	0.040	67. 57
DIAD	12.0	0.027	45.99
CTAR	1.0	0.039	66. 70
CIAB	12.0 .	0.022	37. 21

.2.3 烷基季铵盐改性蒙脱石的 TG 分析

蒙脱石吸附不同烷基季铵盐的热重曲线如图 6 所示。由图 6 可知,蒙脱石经不同季铵盐改性后的 热重曲线有明显差异,热重曲线可分为 3 个失重阶 段:在 50 ~ 150 ℃的失重是由吸附水的脱附造成 的;在 200 ~ 450 ℃的失重是由季铵盐分子热分解 造成的,表明季铵盐阳离子确实插入到蒙脱石的晶 层之间;450 ~ 700 ℃的失重则是由粘土矿物的结 构脱羟基导致的,且不同季铵盐改性的蒙脱石失重 相差较小。

烷基季铵盐在1.0 mmol/L 加入量时,50 ~ 150 ℃内,季铵盐改性的蒙脱石都失去了较多的层间吸 附水,而经过 MD 膜驱剂改性后蒙脱石层间含水量 最小,蒙脱石经其余4种季铵盐改性后,层间含水量 相差不多。这与通过 FT-IR 计算峰面积比得到石层 间含水量的结果基本一致。在12.0 mmol/L 加入量 时,50 ~ 150 ℃范围内,季铵盐改性的蒙脱石都失 去了较少的层间吸附水,这与通过 FT-IR 计算峰面 积比得到的层间含水量的结果略有差别。

用1.0 mmol/L 季铵盐改性蒙脱石在 300 ℃左 右才开始出现明显失重, 而在 12.0 mmol/L 时, DTAB 和 CTAB 改性蒙脱石的分解温度降低为 200 ℃左右。这可能是由于大量的 DTAB 和 CTAB 吸附 在蒙脱石晶层间的内表面和外表面,吸附在表面的 季铵盐分子降低了分解温度。12.0 mmol/L 短链季 铵盐改性蒙脱石在 250 ℃ 开始出现季铵盐分解,由

于短链季铵盐在蒙脱石表面吸附量少,主要吸附在 蒙脱石晶层间的内表面,使季铵盐的开始失重温度 上升。

图6 蒙脱石吸附不同烷基季铵盐的热重曲线

蒙脱石双	讨烷基季铵盐的吸附量列于表5中。
丰 5	费股石对不同控其委综补的吸附量

季铵盐类型	改性剂加入量 c/(mmol・L ⁻¹)	季铵盐质量 . m/g	季铵盐物质的量 n/mmol
TMAD	1.0	1.4	9. 1
IMAD	12.0	8.0	52.0
(E4) ND	1.0	1.5	7.1
(Et) ₄ NB	12. 0	5.5	26. 2
MOREA	1.0	2.8	7.7
MDFFA	12.0	8.0 ·	22. 1
DTAB	1.0	3. 2	10.4 '
	12. 0	20.0	64.9
CTAR	1.0	3.7	10. 2
	12.0	21.5	59. 1

注:200 ~ 450 ℃、以 100 g 蒙脱石为基准测得的吸附量。

由表5可知:在改性剂加入量为1.0 mmol/L时, 不同季铵盐产生的失重相差较小,季铵盐的失重约为 1.4%~3.7%。蒙脱石吸附季铵盐物质的量从大到 小顺序为:TMAB,DTAB,CTAB,MD 膜驱剂, (Et)₄NB;在改性剂加入量为12.0 mmol/L时,不同季 铵盐产生的失重有明显差别,季铵盐的失重约为 5.5%~21.5%。蒙脱石吸附季铵盐物质的量从大 到小顺序为:DTAB,CTAB,TMAB,(Et)₄NB,MD 膜驱 剂。这表明,蒙脱石对(Et)₄NB 和 MD 膜驱剂的吸附 量低于对 DTAB,CTAB 和 TMAB 的吸附量,且在高的 加入浓度下表现更为明显。由于长链季铵盐在蒙脱 石上存在静电力和范德华力两种吸附力,而短链的主 要是静电力。TMAB.电性较强,因此吸附量也较大。

3 结 论

(1) 短链烷基季铵盐 TMAB,(Et)₄NB 和 MD 膜驱剂分子主要以单分子平躺于蒙脱石晶层之间, 且使层间距降低,有较好的防膨作用。长链烷基季 铵盐 DTAB 和 CTAB 以单层平卧、双层平卧、假三层 及倾斜排列等多种方式排列在蒙脱石晶层之间,且 使层间距增加。

(2)烷基季铵盐改性的蒙脱石的晶体结构没有 改变,层间含水量降低,MD 膜驱剂改性蒙脱石层间 含水量最小。

(3) 烷基季铵盐在蒙脱石上的吸附量有明显差 异,在相同浓度时,蒙脱石对(Et)₄NB 或 MD 膜驱剂 的吸附量低于对 TMAB,DTAB 和 CTAB 的吸附量。

参考文献:

- ZHANG Z Z, SPARKS D L, SCRIVNER N C. Sorption and desorption of quaternary amine cations on clays [J]. Environ Sci Technol, 1993,27(8):1625-1631.
- [2] SMITH J A, JAFF P R, CHLOU C T. Effect of quaternary ammonium cations on tetrachloromethane sorption to clay from water[J]. Environ Sci Technol, 1990,24(8): 1 167-1 172.
- [3] LI F, ROSEN M J. Adsorption of gemini and conventional cationic surfactants onto montmorillonite and the removal of some pollutants by the clay[J]. J Colloid Interface Sci, 2000,224(2):265-271.
- [4] 高芒来,于凯.单分子双季铵盐的用途:中国专利, ZL99100061[P]. 2002-07.
- [5] ZHANG F, LOW P F, ROTH C B. Effects of monnovalent, exchangeable cations and electrolytes on the relation between swelling pressure and interlayer distance in montmorillonite[J]. J Colloid Interface Sci, 1995, 173 (1):34-41.
- [6] HENSEN E J M, SMIT B. Why clays swell [J]. J Phys Chem B, 2002, 106(49):12664-12667.

(下转第147页)

3 结 论

(1)中间相沥青的流变性和显微组织结构及晶格参数间互为函数关系,同时受到温度的影响。中间相沥青平稳流动区温度敏感性小,平流区宽,剪切降粘效果显著。

(2)中间相沥青是互熔性差的多相混合体系。 平流区 FCCRF-MP 的粘流活化能小于 FCC-MP,粘 度对温度变化不敏感。FCCRF-MP 非牛顿性强,剪 切降粘更明显。温度升高,中间相沥青趋于牛顿流 体。相比 FCC 油浆,富芳分制备的中间相沥青流变 性更好,更有利于制备针状焦。

(3)富芳分炭化反应生成的中间相,其偏光显 微组织结构是广域流线性结构,而 FCC 油浆的中间 相沥青是粗镶嵌结构。FCCRF-MP 的晶格参数也好 于 FCC-MP。

参考文献:

- 史景利,刘朗,查庆芳. 沥青流变性质的研究方法[J]. 炭素技术,1996,15(3):18-23.
 SHI Jing-li, LIU Lang, ZHA Qing-fang. Method of rheological measurement of pitch [J]. Carbon Techniques, 1996,15(3):18-23.
- [2] 查庆芳,张玉贞,吴明铂,等. 化学气相沉积法 SiC 连续 纤维用炭芯的研究 II:纺丝用中间相沥青的流变性
 [J].石油学报:石油加工,2001,17(增刊):48-53.
 ZHA Qing-fang, ZHANG Yu-zhen, WU Ming-bo, et al. Study on carbon core for SiC continued cilament by CVD

(上接第141页)

- [7] 林宝辉,高芒来.一种二价季铵盐在粘土矿物上的吸附[J].物理化学学报,2005,21(7):808-812.
- LIN Bao-hui, GAO Mang-lai. Adsorption of a divalent quaternary ammonium cation on mineral[J]. Acta Physico-Chimica Sinica, 2005,21(7):808-812.
- [8] 吕宪俊, 宋美宁, 邱俊. 有机蒙脱石结构形成的动态 模型[J]. 有色矿冶, 2005,21(增刊):89-94.
 LÜ Xian-jun, SONG Mei-ning, QIU Jun. Dynamic model for organic montmorillonite structure forming[J]. Nonferrous Mining and Metallurgy, 2005,21(sup):89-94.
- [9] JORDAN J W. Organophilic Bentonites [J]. Journal of Phys Chem, 1949, 53:294-306.
- [10] 陈得芳,王重,李运康.有机膨润土的性能与结构关系的研究[J].西安交通大学学报,2000,34(8):92-95.

CHEN De-fang, WANG Zhong, LI Yun-kang. Relation

II : the rheological properties of the mesophase pitches for melt spinning [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2001, 17(sup):48-53.

- [3] RAND B. Petroleum derived carbons [M]. Washington: ACS Symposium Series 303,1986.
- [4] NAZEM F F. Flow of molten masophase pitch [J]. Carbon, 1982, 20:345-358.
- [5] FITZER E, KOMPALIK D, YUDATE K. Rheological characterization of coal-tar pitches[J]. Fuel, 1987,66: 1505-1512.
- [6] ANTHONY D Cato, DAN D Edie. Flow behavior of mesophase pitch[J]. Carbon, 2003,41:1411-1417.
- [7] 查庆芳,张玉贞,巩春伟,等. 催化裂化油浆溶剂抽提 及其中间相沥青[J]. 炭素技术,2001,113(2):1-5. ZHA Qing-fang, ZHANG Yu-zhen, GONG Chun-wei, et al. Extraction of FCC slurry with solvent and the mesophase pitch derived from extract [J]. Carbon Technique, 2001,113(2):1-5.
- [8] 冯德胜,刘洪国,郝京诚.胶体化学[M].北京:化学工业出版社,2005:121-130.
- [9] 李兆敏.非牛顿流体力学[M].东营:石油大学出版 社,1998:34-41.
- [10] 关德林. 晶体的高温塑性变形[M]. 大连:大连理工 大学出版社,1989:2-11.
- [11] 胡家璁. 高分子 X 射线学[M]. 北京:科学出版社, 2003:150-152.
- [12] ZIMMER J E, WHITE J L. Advance in liquid crystal
 [M]. New York: Academic Press, 1982:157.

(编辑 刘为清)

between properties and structures for organobentonites [J]. Journal of Xi'an Jaotong University, 2000,34(8): 92-95.

- [11] VAHEDIi-FARIDI A, GUGGENHEIM S. Crystal structure of tetramethylammonium-exchanged vermiculite[J]. Clays Clay Miners, 1997,45(6):859-866.
- [12] MADEJOVÁJ. FTIR techniques in clay mineral studies
 [J]. Vibrational Spectroscopy, 2003,31(1):1-10.
- YAN L B, ROTH C B, LOW P F. Changes in the Si-O vibrations of smectite layers accompanying the sorption of interlayer water[J]. Lagmuir, 1996, 12(18):4421-4429.
- [14] YAN L B, STUCKI J W. Effect of structural Fe oxidation state on the coupling of interlayer water and structural Si-O stretching vibrations in montmorillonite [J]. Lagmuir, 1999, 15(13):4648-4657.

(编辑 刘为清)