文章编号:1673-5005(2008)06-0033-07

流体包裹体分析方法在惠民凹陷油气 成藏研究中的应用

张金亮1,杨子成1.2

(1. 中国海洋大学 海洋地球科学学院,山东 青岛 266100; 2. 大庆油田 勘探开发研究院,黑龙江 大庆 163712)

摘要:对惠民凹陷沙四段 10 个砂岩样品中的储层烃和包裹体烃进行了分离和色质分析。结果表明:临南地区正构烷 烃中姥鲛烷略占优势,阳信地区正构烷烃中植烷占优势,检测出微弱含量的 γ-和 β-胡萝卜烷;包裹体烃和储层烃具 有明显的湖相泥岩地球化学特征,生物标志物表明烃类母质富含湖相浮游植物和陆源高等植物;临南洼陷储层烃指 示原油母源为淡水 ~ 微咸水沉积环境,阳信洼陷储层烃和包裹体烃母质沉积环境为微咸水沉积环境;惠民凹陷沙四 段包裹体原油大部分为成熟油,来自沙四上烃源岩,储层油是沙三下低熟烃源岩和沙四上成熟烃源岩混合油;惠民 凹陷油气成藏时间有两期注入,一期为东营组沉积时期,二期为馆陶一明化镇组沉积时期。 关键词:惠民凹陷;流体包裹体分析;油气包裹体;生物标志物;储层烃 中图分类号:TE 122.1 文献标识码:A

Application of fluid inclusion analysis to hydrocarbon accumulation research in Huimin depression

ZHANG Jin-liang¹, YANG Zi-cheng^{1,2}

(1. College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;

2. Research Institute of Exploration and Development, Daqing Oilfield, Daqing 163712, China)

Abstract: The inclusion and reservoir hydrocarbon of 10 samples of sandstone of member 4 of Shahejie formation in Huimin depression were separated and detected by GC-MS. The results show that the pristane predominated in Linnan sag and the phytane predominated in Yangxin sag. A little content of γ - and β - carotenes were detected in n-alkanes. Inclusion hydrocarbon and reservoir hydrocarbon have distinct geochemical characteristics of lacustrine mudstone. The biomarker distributions show that the parent material types of these hydrocarbons are abundant of lacustrine phytoplankton and terrigenous higher plants. Reservoir hydrocarbon of Linnan sag indicate that its source rocks are deposited under fresh water and brackish water environment. The source rocks of inclusion and reservoir hydrocarbon within Yangxin sag are deposited under brackish water environment. Most of inclusion hydrocarbon in Huimin depression are mature oils and stem from member 4 of Shahejie formation. A few reservoir hydrocarbon originate from the immature source rock of member 3 and mature source rock of member 4. The accumulation phases of hydrocarbon reservoirs in the south slope are divided into two phases; the sedimentary period of Dongying formation and the sedimentary period of Guantao-Minghuazhen formation.

Key words: Huimin depression; fluid inclusion analysis; oil and gas inclusion; biomarker; reservoir hydrocarbon

储层中油气包裹体代表早期注入油藏中的油 气^[14]。混源油气藏由于烃源岩的生排烃时间不 同,造成油气注入时间也不同。这就会造成储层 中不同富集状态的油气组分地球化学特征会存在 明显差异。通过包裹体烃和储层烃的地球化学特 征对比可以反映油气注人过程中油源或成熟度的 变化^[5-10]。Nedkvitne 等^[7]利用自生矿物内包裹体 的烃类分子特征,并结合详细的成岩作用研究以 及液体包裹体的显微测温结果确定 Ula 油田的油

收稿日期:2008-05-26

基金项目:国家"863"高技术研究发展计划项目(2006AA09Z336)

作者简介:张金亮(1962-),男(汉族),山东寿光人,教授,博士,从事石油地质学与沉积地质学研究。

气充注时间。赵伟卫等^[45]通过对储层中包裹体 内外生物标志物组成的分析,提出河南凹陷邓2 井古近系油藏遭受了严重生物降解,而成藏前原 油只有轻微的生物降解作用。惠民凹陷现今发现 油气藏多位于浅层沙三段以上,深层沙四段油气 包裹体地球化学特征和成藏规律未见报道。然 而,随着勘探工作的推进,勘探难度增大,勘探领 域由中浅层向深层扩展,油气藏由构造油气藏转 向隐蔽油气藏,因此,有必要对深层沙四段油气地 球化学特征和成藏机理进行研究。

1 地质背景

惠民凹陷位于济阳凹陷西南部,北为埕宁隆起, 南为鲁西隆起,东西分别与东营凹陷及禹城凹陷相 接,轴向 NEE,东西长约 90 km,南北宽约 70 km。其 内部可划分为滋镇、临南、阳信、里则镇 4 个次级洼 陷和林樊家构造、中央隆起带、惠民南斜坡 3 个正向 构造带^[11]。

惠民凹陷地层序列与整个济阳凹陷地层序列-致,自下而上包括孔店组、沙河街组、东营组、馆陶 组、明化镇组和第四系。孔店组发育灰绿色、紫红色 及灰色泥岩。沙河街组自下而上分为沙一段、沙二 段、沙三段和沙四段。沙四段发育紫红色泥岩夹棕 色、棕褐色粉砂岩、泥质岩及泥岩互层。沙三段主要 发育灰色及深灰色泥岩夹砂岩、油页岩及碳质湖相 泥岩。沙二段岩性为灰绿色、灰色泥岩与砂岩、含砾 砂岩互层,夹碳质泥岩。沙一段岩性为灰色、深灰 色、灰褐色泥岩、油泥岩和油页岩。

2 试验方法

本次研究的 10 块样品来自不同地区的 8 口井。 QX141,X47,XX507 和 XX96 井位于曲堤地垒沙四 段,P45,S52 和 LS1 井位于中央隆起带沙四段,Y101 井位于阳信洼陷沙四段。筛选粒径 0.25 ~ 0.1 mm 的砂岩颗粒约 100 g,用二氯甲烷-甲醇(体积比为93 :7)抽提 72 h,得到自由态组分。抽提后的颗粒先 用盐酸处理,清洗干净并干燥后,再用新配制的浓硫 酸-重铬酸钾液处理 12 h,使残留在颗粒内的油气组 分(主要是极性组分)氧化。将样品清洗干净后,再 用二氯甲烷-甲醇抽提 72 h,除去颗粒表面可能残留 的油气组分。将抽提过后的样品尽可能磨细,使捕 获在矿物中的油气包裹体释放出来,用二氯甲烷-甲 醇抽提 72 h,得到油气包裹体组分。上述各油气组 分,脱沥青质后,用硅胶-氧化硅柱层析分离得到饱 和烃、芳烃和非烃。

3 结果讨论

3.1 惠民凹陷油气包裹体特征

显微观察表明,油气包裹体在样品中分布比较 广泛、丰富,透光下颜色以淡褐色、褐色为主,荧光照 射下,发黄绿色。多数分布于石英颗粒次生加大边 中,部分分布于愈合的石英裂缝或微晶石英中,也有 少许分布于蚀变的长石颗粒内部,大小介于5~30 µm,形状多为椭圆形和圆形(图1),次为不规则状 或伸长状。

(a) XX507-1 透光

(b) XX507-1 荧光

图 1 油气包裹体照片 Fig. 1 Photomicrographs of oil and gas inclusions

含烃包裹体在 XX507 井发育,直径为 2 ~ 20 μm 不等;形态各异,有椭圆形、不规则形和方形等; 两相界线较明显,液相为无色或淡褐色,气相则为淡 褐色或褐色;主要沿石英颗粒边部产出。鉴别这类 包裹体通常是观察它的均一化温度,将包裹体放在 热台上加热,随温度升高,包裹体气相部分逐渐增 大,液相部分减少直至消失,最后均一为气相。可再 通过荧光颜色进一步验证,包裹体的气相部分在荧 光照射下不发光,液相部分发蓝色荧光。气态烃包 裹体数量少,大小不等;在镜下呈单一相,形状主要 为圆球状(与最低表面能有关);总体颜色为褐色或 深褐色,包裹体中心为一亮点;主要分布在石英颗粒 的裂隙中。含气态烃盐水包裹体大小不等,直径 2 ~20 μm;气液比大约为 10%~15%,气相特点与气 态烃包裹体相似,主要呈圆球状与液相共存,液相带 颜色较浅,无色透明或淡黄色;在石英加大边、石英 颗粒的愈合裂缝中均有产出。

3.2 族组成

砂岩样品各类油气组分的组成见表1。

表1 油砂各类油气族组分

Table 1 Group composition of oil sands

样品号	深度 h/km	类型	族组分 w/%				
			饱和烃	芳烃	非烃	沥青质	
QX141	2. 1746 ~ 2. 1669	储层烃	66.6	9.6	8.3	15.5	
		包体烃	7.3	11.2 (53. 1	18.4	
X47	3. 0723 ~ 3. 0646	储层烃	62.6	11.4	16. 0	9.9	
		包体烃	17.8	13.2	53.8	15.2	
XX507-1	3. 3596 ~ 3. 3520	储层烃	85.0	7.5	3.0	4.5	
		包体烃	12.3	10.3 (50.6	16.7	
XX507-2	3. 3864 ~ 3. 3780	储层烃	70.6	9.0	12.0	8.4	
		包体烃	15.5	13.5 4	46.5	24.5	
LS1-1	3. 053 1 ~ 3. 049 5	储层烃	82.5	5.0	8.4	4.1	
		包体烃	15.0	5.5 (62.6	16. 9	
LS1-2	3. 1664 ~ 3. 1559	储层烃	72.9	11.5	5.9	9.7	
		包体烃	12.4	7.2 (51.3	19. 1	
¥101	2. 4793 ~ 2. 4712	储层烃	59.2	13.9	7.7	19. 2	
		包体烃	13.9	12.4	32. 5	41.2	
P45	1. 9384 ~ 1. 9292	储层烃	74.3	10.1	9.1	6.5	
		包体烃	21.7	10.8 4	46.4	21.1	
XX96	3. 7757 ~ 3. 767 3	储层烃	71.5	10.5	10. 5	7.5	
		包体烃	31.4	8.8 4	41.8	18.0	
S52	2. 8595 ~ 2. 8515	储层烃	58.8	16.0	8.4	16.8	
		包体烃	25.3	6.6	50.1	8.0	

10 个油砂储层烃组分主要以饱和烃为主,饱和 烃变化比较大,介于 58% ~ 85%。由于油砂样品都 在岩心库存放多年,轻烃组分挥发较严重。挥发掉 的油气组分主要为饱和烃和芳烃,因此初始的轻烃 组分饱和烃和芳烃含量应该比现今高。各油砂样中 油气包裹体的饱和烃和芳烃含量比较低,主要为非 烃和沥青质,非烃和沥青质含量之和为 59.8% ~ 81.5%,这主要与矿物优先吸附极性组分有关。与 国外及我国以前的同类研究相比,油气包裹体非烃 及沥青质含量相对偏高,因为油气包裹体总量很少, 在抽提和柱层析组分分离过程中饱和烃和轻芳烃容 易挥发。

3.3 储层烃和包裹体烃特征

3.3.1 正构烷烃分布特征和类异戊间二烯烷烃

从包裹体中的气相色谱图(图2)可以看出,所 有包裹体样品色谱图上基线出现较平缓的鼓包,但 并不是生物降解所致,样品中未检测出 C₂₅降藿烷,

正构烷烃偏离基线是由于样品含量低,有挥发所致, 牛物降解基本没有或者很弱。包裹体烃都检测出了 微弱含量的 y-胡萝卜烷、B-胡萝卜烷,指示还原含 盐的湖相沉积环境[12]。包裹体烃和储层烃主峰碳 一般为C12~C36,相对丰度较高的碳主要集中在C15 ~C33, 烃类奇偶优势不明显, OEP 值为 1~1.5, CPI 值为1.03~1.82(表2)。成熟油储层烃(C%甾烷w (20S)/w(20S + 20R) > 0.4)的 w(Pr)/w(Ph) 为 0.969~1.332,明显高干包裹体烃,指示偏淡水-微 咸水还原环境:成熟油储层烃相对于包裹体烃 w (C_{n1})/w(C_{n1})较高,小于1,烃类普遍具有后峰 群优势,说明陆生高等植物输入占优势。低熟油储 层烃却正好与上述相反,XX96 井储层烃包裹体烃 w (Pr)/w(Ph)值和 w(C21-)/w(C21+)都较低,包裹 体正构烷烃分布具有双峰群特征,且以 C₁₇, C₂₅为主 峰,说明早期原油母源输入具有浮游植物和陆源高 等植物的双重贡献, 而 XX96 储层烃正构烷烃呈单 峰型, 主峰碳为 C₂₁, 说明有后注人油气相混合。 P45 井储层烃包裹体 w(Pr)/w(Ph) 值大于1,指示 弱还原沉积环境。

 图 2 包裹体短(左)与储层控(右)方价结果
 Fig. 2 Oil-source correlation from inclusion and reservoir hydrocarbon

3.3.2 萜烷分布特征

储层烃和包裹体烃的萜烷分布特征也存在明显 差异。储层烃和包裹体烃三环萜烷碳数从 C₁₈至 C₃₀ 连续分布(C₂₁缺失),整个系列以 C₂₃丰度最高,呈倒 "V"型分布,在 C₂₆-三环二萜烷旁可检测出明显的 C₂₄-四环二萜烷,w(三环萜烷)/w(五环萜烷)小于 1,表明惠民凹陷油气母源藻类输入很少。储层烃相 对于包裹体烃的 w(三环萜烷)/w(五环萜烷)明显 偏低,其中 XX96 井储层烃高于包裹体的 w(三环萜 烷)/w(五环萜烷)值,这可能与热成熟演化有 关^[13-14]。

表 2 惠民凹陷油砂样品正构烷烃地化参数

Table 2 Geochemical parameters of n-alkanes from oils sands in Huimin depression

编号	类型	$w(Pr)/w(nC_{17})$	$w(Ph)/w(nC_{18})$	w(Pr)/w(Ph)	OEP	CPI	$w(C_{21})/w(C_{21+})$	主峰碳	碳数分布
QX141	储层烃	0. 360	0. 226	1. 322	1. 553	1. 121	0. 695	21	15 ~ 35
	包裹体	0. 480	0. 389	1.026	0. 707	1.211	0. 476	23	12 ~ 36
X47	储层烃	0. 387	0. 312	0. 981	1.006	1.106	0. 522	21	15 ~ 35
	包裹体	0. 383	0. 387	0. 969	1.317	1. 199	0. 349	29	12 ~ 36
XX507-1	储层烃	0.311	0. 229	1.347	1.049	1.112	0.864	18	14 ~ 35
	包裹体	0. 218	0. 193	1.079	0. 699	1.186	0. 556	23	12 ~ 36
XX507-2	储层烃	0. 337	0. 252	1.056	1.005	1.100	0. 629	21	15 ~ 35
	包裹体	0. 235	0. 204	1.047	1. 088	1. 189	0. 376	25	12 ~ 36
LS1-1	储层烃	0. 365	0. 248	0. 838	1.004	1.115	0. 547	21	15 ~ 34
	包裹体	0. 341	0. 273	1.332	1.125	1. 143	0. 581	25	12 ~ 36
LS1-2	储层烃	0. 690	0. 407	0. 730	1.042	1.117	0. 376	23	15 ~ 35
	包裹体	0. 427	0. 365	1. 172	1. 132	1.217	0.468	25	12 ~ 36
¥101	储层烃	0.985	1. 225	0.811	1.059	1.034	0. 849	23	14 ~ 34
	包裹体	0. 873	1. 119	0. 781	1. 135	1.201	0. 604	25	12 ~ 36
P45	储层烃	0. 564	0. 708	1. 296	1.087	1. 184	0. 306	31	15 ~ 34
	包裹体	0. 466	0. 604	1. 059	1.124	1.820	1.008	15	12 ~ 36
XX96	储层烃	0. 306	0. 245	0. 919	1.042	1.080	0. 582	20	15 ~ 36
	包裹体	0, 279	0. 260	1. 137	1. 107	1.154	0. 615	25	12 ~ 36
S52	储层烃	0. 997	0. 882	0. 727	1.071	1.035	0. 392	23	15 ~ 36
	包裹体	0. 667	0. 694	0. 987	1. 166	1.145	0. 348	29	12 ~ 36

 $w(C_{24}$ 四环萜烷)/ $w(C_{26}$ 三环萜烷)的相对丰度 在惠民凹陷烃类中存在明显差异,临南洼陷储层烃 的 $w(C_{24}Te)/w(C_{26}TT)为2.0~4.0,而包裹体烃的$ $<math>w(C_{24}Te)/w(C_{26}TT)为1.2~2,储层烃比包裹体的$ $高,阳信洼陷储层烃相对于包裹体的<math>w(C_{24}Te)/w$ ($C_{26}TT$)值较低。

储层烃相对于包裹体烃 w(C₂₀ 藿烷)/w(C₃₀ 藿 烷)值较高,反映了油气充注阶段的原油母质输入 的变化。其中 XX507-1 样品储层相对于包裹体烃 w 临南洼陷储层烃伽马蜡烷的相对含量低,w (G)/w(C₃₀)为0.06~0.15,一些样品(QX141, X47,LS1-1,LS1-2,XX96)伽马蜡烷很微弱几乎检测 不到,包裹体烃中的伽马蜡烷的相对含量很高,w (G)/w(C₃₀)为0.09~0.18。阳信洼陷Y101样品 储层烃和包裹体烃 w(G)/w(C₃₀)值较高,分别为 0.23和0.22,储层烃和包裹体烃伽马蜡烷含量相差 不大。

随着成熟度的增加,17α(H)-三降藿烷 Tm 逐 渐消失,而 18α(H)-三降藿烷 Ts 相对浓度增加。 QX141,Y101 和 X47 样品储层烃相对于包裹体烃 w (Ts)/w(Tm)较低,XX507,LS1,XX96 和 S52 样品 储层烃相对于包裹体烃 w(Ts)/w(Tm)较高。

3.3.3 甾烷分布特征

本区储层烃和包裹体烃中 $C_{27} \sim C_{29}$ 规则甾烷具 有明显不同的分布模式。XX507-2, LS1-1, XX96 样 品储层烃中甾烷 C_{27} , C_{28} 和 C_{29} $\alpha\alpha\alpha R$ 三峰构成"V" 型,反映其母质输入中高等植物和水生生物均很丰 富,具有陆相湖盆混合母质特征。QX141, X47, XX507-1, LS1-2, P45 储层烃和 S52(储层烃和饱和 烃)样品甾烷呈"L"型分布(图2),反映其母质输入 中低等水生生物藻类为主并有高等植物参与。 QX141,X47,XX507-1,XX507-2,LS1-1,LS1-2,P45, XX96 包裹体烃和 Y101 储层烃和包裹体烃都呈"反 L"型,反映其母源输入中有高等植物输入。

重排甾烷在惠民凹陷普遍存在,但重排甾烷含 量都很低。大部分储层烃相对于包裹体烃的 w(重排甾烷)/w(规则甾烷)高,Y101和 S52 井则相反。 无论是包裹体烃还是储层烃,样品成熟度越高, w(重排甾烷)/w(规则甾烷)值越大。包裹体烃w(重排甾烷)/<math>w(规则甾烷)为0.16~0.23,储层 w(烃重排)/w(规则甾烷)值为0.15~0.36。

尽管样品中甲基甾烷丰度不高,但它在沙四段 普遍存在。其中沙四段储层烃相对于包裹体烃 4-甲基甾烷含量较高,LS1 样品储层烃相对于包裹烃 4-甲基甾烷含量较低。从目前发表的文章来看,均 把 4-甲基甾烷系列归源于沟鞭藻类^[17]。

 C_{29} 甾烷 w(20S)/w(20S + 20R)和 C_{29} 甾烷 w (ββ)/w(ββ + αα)值可以表征原油的成熟度。宋 一涛^[18]将这两项参数的界限值均确定为 0.4。 C_{29} 甾烷 w(ββ)/w(ββ + αα)值可能受到成岩条件的 影响^[1920],特别是在盐湖条件下,其值也许异乎寻 常地高^[21]。因此,划分成熟度比较可靠的指标是 C_{29} 甾烷 w(20S)/w(20S + 20R)值。LS1,S52,P45 和 Y101 井储层烃 C_{29} 甾烷 w(20S)/w(20S + 20R) 小于 0.4,属于低熟油,而包裹体 C_{29} 甾烷 w(20S)/w (20S + 20R)大于 0.4,属于成熟油。这说明沙四段 早期油气注入的是成熟油,后期又有低成熟原油注 入,也就是说沙四段至少有两期油气注入。

3.4 油气充注机理

临南洼陷储层中包裹体烃与深层沙四段烃源岩 具有亲缘性,其共同特征是在 C₂₇,C₃₈,C₃₀规则甾烷分 布图(图3)中,C₂₉规则甾烷明显富集(S52 并除外), 而贫 C₂₇甾烷、C₂₈甾烷和低伽马蜡烷含量。东营组沉 积初期沙四段烃源岩已经达到生烃门限,烃源岩生成 的成熟油气沿断层垂向运移,遇到圈闭聚集成藏,东 营组沉积中期,由于喜马拉雅运动造成地层抬升,部 分地层遭受到剥蚀。现今储层中油气是晚期注入的 油气和早期生成的成熟原油混合油气。

阳信洼陷 Y101 样品储层烃和包裹体烃与阳信 洼陷沙三段烃源岩生物标志物具有相似性(图4), C₂₇,C₂₈,C₂₉规则甾烷成"反L"型分布,C₂₉甾烷含量 占优势,伽马蜡烷含量高,伽马蜡烷指数大于0.2, 反映沉积母源为微咸水沉积环境。临南储层烃与沙 三段烃源岩具有亲缘性(图4),其共性是C₂₇,C₂₈, C₂₉规则甾烷中C₂₇甾烷具有明显优势,个别样品C₂₉和C₂₇甾烷含量差不多,这是由于晚期注入的原油和 早期注入的原油混合所致。临南洼陷样品储层烃伽 马蜡烷含量很低,有的样品甚至检测不到伽马蜡烷, 指示原油母源为淡水 ~ 微咸水沉积环境。馆陶一明 化镇组沉积时期沙三段烃源岩生成的油气进入沙四 段储层,虽然油源来自同一套烃源岩,但是埋深可相 差数十米,甚至上百米,洼陷中心的烃源岩成熟度较 高,浅部斜坡或断层的上升盘成熟度较低,这也就造 成了不同部位储层中原油成熟度的差异。临近洼陷 中心附近的储层烃成熟度很高,个别样品都已达到 热平衡状态(XX96 井),位于中央隆起带上的储层 烃成熟度则相对较低。

惠民凹陷低熟油的形成主要有以下几条重要原 因:①沙三段烃源岩中存在富含藻类的有机质富集 层,它是形成低熟油的物质基础;②富含有机酸、鉀 离子、铝离子的地层流体特征加速了粘土矿物的成 岩演化,促进了低熟油的生成;③可溶有机质是形成 低熟油的主要贡献者。结合包裹体均一温度和精细 埋藏史曲线(图3),可知惠民凹陷油气成藏时间有 两期注入,一期为东营组沉积时期,东营期沙四段烃 源岩已经达到成熟,成熟油气充注到储层中。二期 为馆陶—明化镇组沉积时期,这时沙三段烃源岩生 成的低熟油和成熟油都相继注入到临近的储层中, 后期注入的油气和早期注入的原油相混合。因此, 惠民凹陷低熟油成藏具有晚生、晚排、成藏期晚、运 移距离短等特点。

图 4 临南和阳语注阳油源对氏 Fig. 4 Oil-source correlation in Linnan sag and Yangxin sag

4 结 论

(1)临南地区正构烷烃中姥鲛烷略占优势,阳 信地区正构烷烃中植烷占优势。检测出微弱含量的 γ -和 β -胡萝卜烷。成熟油储层烃相对于包裹体烃 w $(C_{21-})/w(C_{21+})较高,陆生高等植物输入占优势,$ 而低熟油储层烃却正好与此相反。

(2)临南洼陷储层原油母源为淡水 ~ 微咸水沉 积环境。阳信洼陷储层原油母质沉积环境为微咸水 沉积环境。储层烃和包裹体烃母质既有低等水生生 物藻类输入又有陆源高等植物参与。

(3)临南洼陷储层中包裹体烃与深层沙四段烃 源岩具有亲缘性,阳信洼陷储层烃和包裹体烃与阳 信洼陷沙三段烃源岩生物标志物具有相似性。临南 储层烃与沙三段烃源岩具有亲缘性。

(4)惠民凹陷油气成藏时间有两期注入:一期

为东营组沉积时期,东营期沙四段烃源岩已经达到 成熟,成熟油气充注到储层中;二期为馆陶一明化镇 组沉积时期,这时沙三段烃源岩生成的低熟油和成 熟油都相继注入到临近的储层中,后期注入的油气 和早期注入的原油相混合。

参考文献:

- 潘长春,杨坚强.准噶尔盆地砂岩储集岩生物标志化合物特征及其意义[J].地球化学,1997,26(5):82-90.
 PAN Chang-chun, YANG Jian-qiang. Characteristics of biomarker compounds in sandstone reservoir rocks in Jungar basin and its implications[J]. Geochemica, 1997,26 (5):82-90.
- [2] 潘长春,杨坚强. 油气藏微观不均一性及其意义[J]. 沉积学报,1998,16(4):98-104.
 PAN Chang-chun, YANG Jian-qiang. Geochemical heterogeneities of hydrocarbon reservoirs in microscale and applications[J]. Acta Sedimentologica Sinica, 1998,16(4): 98-104.
- [3] 潘长春,傅家谟,盛国英,等. 准噶尔盆地腹部油气藏油 源的确定及其意义[J]. 石油学报,1999,20(5):27-32. PAN chang-chun, FU Jia-mo, SHENG Guo-ying, et al. Determination and implication of petroleum origins of oil reservoir in Junggar Basin[J]. Acta Petrolei Sinica, 1999, 20(5):27-32.
- [4] 赵伟卫,金强,王伟锋,等. 河南济源凹陷邓2井油藏成 因分析[J]. 高校地质学报,2003,9(1):113-122. ZHAO Wei-wei, JIN Qiang, WANG Wei-feng, et al. A genetic model for the Deng-2 oil pool in the Jiyuan depression, Henan province[J]. Geological Journal of China Universities. 2003,9(1):113-122.
- [5] ZHAO W W, JIN Q, WANG W F, et al. Investigation of oil-pool formation from the homogenization temperatures of fluid inclusions and biomarkers in reservoir rocks: a genetic model for the Deng-2 oil-pool in the Jiyuan depression [J]. Marine and Petroleum Geology, 2002, 19(9): 1141-1150.
- [6] PAN Chang-chun, YANG Jian-qiang, FU Jia-mo, et al. Molecular correlation of free oil and inclusion oil of reservoir rocks in the Junggar Basin, China[J]. Org Geochemistry, 2003,34(3):357-374.
- [7] NEDKVITNE T, KARLSEN D, BJØRLYKKE K, et al. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea[J]. Marine and Petroleum Geology, 1993,10(3):255-270.
- [8] WILHELMS A, LARTER S R. Origin of tar mats in petroleum reservoirs part I: introduction and case studies [J]. Marine and Petroleum Gology, 1994,11(4):418-441.

- [9] BHULLAR A G, KARLSEN D A, BACKER O K, et al. Dating reservoir filling—a case study from the North Sea [J]. Marine and Petroleum Geology, 1999, 16(7):581-603.
- [10] GEORGE S C, KRIEGER F W, EADINGTON P J; et al. Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro sandstone [J], Papua New Guinea Org Geochemistry, 1997,26(3):155-173.
- [11] 袁静.惠民古近系风暴沉积研究[J].中国石油大学 学报:自然科学版, 2006, 30(4):1-6. YUAN Jing. Study of tempestite sedimentary of Paleogene in Huimin depression [J]. Journal of China University of Petroleum(Edition of Natural Science), 2006, 30(4):1-6.
- [12] FUJM, SHENGGY, XUJY, et al. Application of biological markers in the assessment of Paleoenviroment of Chinese non-marine sediments [J]. Org Geochemistry, 1990,16(4):769-779.
- [13] AQUINO NETO F R, TRENDEL J M, et al. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums [M]//WILEY J and SONS. Advances in organic geochemistry. New York, 1983;659-676.
- [14] PETERS K E, MOLDOWAN J M, SUNDARARAMAN P. Effects of hydrous pyrolysis on biomarker thermal maturity parameters: monterey phosphatic and siliceous members[J]. Organic Geochemistry, 1990, 15(3):249-265.
- [15] OURISSON G, ALBRECHT P, ROHMER M. The hopanoids. Palaeochemistry and biochemistry of a group of

(上接第32页)

- [11] 山东省第四地质矿产勘察院.山东省区域地质[M]. 济南;山东省地图出版社,2003;1-970.
- [12] 李桂群,范德江. 胶莱盆地构造单元划分及其特征[J]. 青岛海洋大学学报,1994,24(2):239-246.
 LI Gui-qun, FAN De-jiang. Tectonic units division and their characteristic in the Jiaolai Basin[J]. Journal of Ocean University of Qingdao,1994,24(2):239-246.
- [13] 施炜,张岳桥,董树文,等.山东胶莱盆地构造变形及形 成演化[J].地质通报,2003,22(5):325-334.
 SHI Wei, ZHANG Yue-qiao, DONG Shu-wen, et al. Tectonic deformation and formation and evolution of the Jiaolai Basin[J]. Geological Bulletin of China,2003,22(5): 325-334.
- [14] 李金良,张岳桥,柳宗泉,等. 胶莱盆地沉积-沉降史分析与构造演化[J]. 中国地质,2007,34(2);240-250.
 LJ Jin-liang, ZHANG Yue-qiao, LIU Zong-quan, et al. Analysis of sedimentary-subsidence history and tectonic evolution of the Jiaolai Basin[J]. Ceology in China, 2007,

natural products [J]. Pure and Applied Chemistry, 1979,51(4);709-729.

- [16] OURISSON G, ALBRECHT P, ROHMER M. Predictive microbial biochemistry from molecular fossils to prokaryotic membranes [J]. Trends in Biochemical Sciences, 1982,7(7):236-239.
- [17] BOON J J, RIJPSTRA W I C, DE L F, et al. Black sea sterols—a molecular fossil for dinoflagellate blooms [J]. Nature, 1977,277(1):125-127.
- [18] 宋一涛.丛粒藻烃类的研究[J].石油与天然气地质, 1991,12(1);22-33.
 SONG Yi-tao. Study on hydrocarbon of botryococcus[J]. Oil & Gas Geology, 1991,12(1);22-33.
- [19] ten HAVEN H L, de LEEUW J W, PEAKMAN T M, et al. Anomalies in steroid and hopanoid maturity indices
 [J]. Geocheimica et Cosmochimica Acta, 1986,50(5): 853-855.
- [20] PEAKMAN T M, ten HAVEN H L, RECHKA J R, et al. Occurrence of (20R)-and(20S)- $\Delta 8$ (¹⁴) and $-\Delta^{14}5\alpha$ (H)-steranes and the origin of 5α (H), 14(β), 17(β)steranes in an immature sediment [J]. Geochimica et Cosmochimica Acta, 1989, 53(8):2001-2009.
- [21] RULLKOTTER J, MARZI R. Natural and artificial maturation of biological marker in a Toarcian shale from northern Germany [J]. Organic Geochemistry, 1988, 13 (4): 639-645.

(编辑 徐会永)

34(2):240-250.

[15] 姜在兴,熊继辉,王留奇,等.胶莱盆地下白垩统莱阳组 沉积作用和沉积演化[J].石油大学学报:自然科学版, 1993,17(2):8-15.

JIANG Zai-xing, XIONG Ji-hui, WANG Liu-qi, et al. Sedimentology and evolution of lower cretaceous Laiyang formation in Jiaolai Basin [J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1993, 17 (2):8-15.

[16] 吴智平,李凌,李伟,等. 胶莱盆地莱阳期原型盆地的沉积格局及有利油气勘探区选择[J]. 大地构造与成矿学,2004,28(3):330-337.
 WU Zhi-ping, LI ling, LI Wei, et al. Sedimentary pattern

of prototype basin in the depositional period of Laiyang formation and the advantageous areas for oil and gas exploration of Jiaolai Basin [J]. Geotectonica Et Metallogenia,2004,28(3):330-337.

(编辑 徐会永)