引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Dynamic modeling of gas loading with controllable ignition of propellants for downhole blasting fracturing
WU Feipeng1, JIA Han2, REN Yang1, LIU Min1, PU Chunsheng1, ZHAO Yuchuan3
(1.School of Petroleum Engineering in China University of Petroleum, Qingdao 266580, China;2.School of Earth Science in Yangtze University, Wuhan 430100, China;3.Zhongyuan Petroleum Exploration Bureau, Puyang 457000, China)
Abstract:
A new ignition technique was proposed for downhole blasting fracturing using high energy propelants, in which a high speed and a low speed propellant are loaded in series with simultaneous ignition in a central tube. The new technique can avoid the problems of the currently ones that use single speed and one-pulse propellant for its instability and ignition-delay. Based on the different deflagration speed equations, the mass and energy conservation equations, a dynamic gas loading model of the multi-pulse deflagration was established, which can be used to simulate the dynamic loading process with different ratios of the propellants. The results show that the packaged propellants work well with the dynamic loading of the combination of the high and low speed propellants, in which a small quantity of the high speed propellant is ignited to generate a high pressure for initializing fractures, and large amounts of the low-speed propellant are ignited for the enlargement and extension of the fractures. It is suggested that, in order to achieve initializing fractures quickly and the protection of the casing, the usage of the high deflagration speed propellant can be reduced, while the quantity of the low deflagration speed propellant can be increased.
Key words:  gas fracturing  propellant deflagration  loading model  confined space