引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Experiment on explosion limits of methane-air mixtures at high pressure and high temperature
REN Shaoran1, HUANG Lijuan1, ZHANG Liang1, WANG Yu1, PEI Shufeng1, WEI Yong2, XIAO Yu2, CHEN Chu2
(1.School of Petroleum Engineering in China University of Petroleum(East China), Qingdao 266580, China;2.Research Institute of Petroleum Exploration and Development of Tuha Oilfield Company, PetroChina, Turpan 838200, China)
Abstract:
The explosion limits and theoretical critical oxygen volume fraction of methane-air mixtures at high pressure (up to 20 MPa) and high temperatures (up to 100 ℃) were measured in the laboratory via explosion experiments. Electrically powered tungsten wires with high ignition energy were used as ignition sources, and an approximation method was adopted in the determination of the explosion limits. Based on the experimental data, a high pressure and high temperature explosion limit prediction model for methane-air mixtures was established. The experimental results indicate that as the initial pressure and temperature increase, the lower explosion limit (LEL) of methane in air is slightly reduced, while the upper explosion limit (UEL) is significantly increased, and the theoretical critical oxygen volume fraction is gradually reduced. The explosion limits of methane arevaried linearly and logarithmically with temperature and pressure, respectively. The explosion limit of methane-air mixtures at 20 MPa and 100 ℃ is 2.87% to 64.40%, and the theoretical critical oxygen volume fraction is as low as 5.74%. In addition, at near the UEL points, some CO can be generated after the explosion reaction due to lack of oxygen, while at near LEL, the reaction products mostly consist of CO2 since oxygen is sufficient in the gas mixture.
Key words:  methane explosion  air injection  high pressure and high temperature  explosion limits  critical oxygen volume fraction  explosion ignition