引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Experimental study on near-wall-pressure in gas well tubing based on self-similar theory
LIU Minggang1,2, YAN Yifei2,3, XIE Wei4, WANG Jianjun5, HAN Shengchao1,2, YANG Xiujuan1,2,YAN Xiangzhen1,2
(1.College of Pipeline and Civil Engineering in China University of Petroleum, Qingdao 266580, China;2.Oil and Gas CAE Technology Research Center in China University of Petroleum, Qingdao 266580, China;3.College of Electromechanical Engineering in China University of Petroleum, Qingdao 266580, China;4.Petroleum Production Engineering Research Institute of Huabei Oilfield Company, Renqiu 062552,China;5.CNPC Tubular Goods Research Institute, Xi 'an 710077, China)
Abstract:
The flowing state and pressure distribution near the wall of the wellbore plays an important role in the safety and integrity assessment of gas wells. An indoor small-scale testing experiment is designed to study the flowing state in the column based on the similarity principle. The geometrical similarity between the model and the prototype, and the Reynolds number self-similarity are both realized by the size scale and velocity control. The comparative analysis in use of experimental and numerical methods is performed to study the near-wall-pressure in the bending area of the tube, and the feasibility of the experiment is verified by the relative error analysis. The result shows that, the experiment satisfies the geometry similar conditions and self-similarity of Reynolds number. The experimental results of the near-wall-pressure is smaller than the numerical simulation result when the kinematics viscosity is taken as an invariable. The maximum experimental error is 4.12% when the working pressure is less than 20 MPa and the experimental error decreases with the increase of the working pressure. With the increase of the production pressure (pp=5 ~ 20 MPa) and the tubing diameter (D=76.00 ~ 157.08 mm), the near-wall-pressure and pressure-fall of the tubing also increase. The pressure-distance rate of the inflow end in the bending segment increases with the increase of the deviation angle and tubing diameter, while that of the outflow end is on the contrary. Conclusions can be drawn that the fluid in tubing experiment satisfying the geometric similarity and Reynold self-similarity is an efficient way to investigate the near-wall-pressure.
Key words:  tubing  fluid experiment  near-wall-pressure  similarity theory  underground gas storage